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Abstract 

We examine the proposal made recently that the su (3) modular invariant partition functions could 
be related to the geometry of the complex Fermat curves. Although a number of coincidences and 
similarities emerge between them and certain algebraic curves related to triangular billiards, their 
meaning remains obscure. In an attempt to go beyond the su(3) case, we show that any rational 
conformal field theory determines canonically a Riemann surface. 
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1. In t roduc t ion  

The partition function of a rational conformal field theory (RCFT) on a torus is subjected 

to modular invariance constraints. These constraints turn out to be very strong, and have 

led to the classification of families of models. The most celebrated achievement is the ADE 

classification of s u  (2) Wess-Zumino-Novikov-Wit ten  models [ 1 ]. Its relationship with the 

classification of simply laced Lie algebras, a one-to-one correspondence, is an a posteriori 

observation. Two very different problems lead to the same classification pattern, but the 
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proofs have very little in common. This remarkable coincidence sustained the hope that 

RCFTs, combined with the requirement of modular invariance, could perhaps be organized 

by known mathematical structures, thereby bringing order in the so-called conformal zoo, 

and possibly much deeper connections with seemingly unrelated problems. At the moment, 
however, such general connections remain very uncertain. Even in the case of the su(2) 

models, the reason behind the ADE correspondence has remained elusive. The few other 

families of theories classified up to now are either closely related to ADE, or clearly re- 
lated to arithmetical peculiarities, which look like mere facts, and for that reason, are not 

understood. 

The classification of su  (3) modular invariants, due to Gannon [2], belongs to this second 
class. But even if a clear interpretation of the result is lacking, the work on su(3) has led 

to fundamental progress in our understanding of general methods to address the problem 

of modular invariance. In particular a very powerful (but weaker than the full modular 
invariance) selection rule, called the parity rule, has emerged. First defined in a restricted 

context [3,4], it has now been shown to hold in any rational conformal field theory as an 
application of Galois theory [5]. A few years ago, Thiran, Weyers and one of the authors 

[4] observed that the parity rule for su(3) appears in a totally different context, as an 

isomorphism criterion for Abelian varieties that build up the decomposition of the Jacobian 

of Fermat curves in simple factors. In this case, existing mathematical results about Fermat 
curves apply directly to the problem of modular invariance, and the work of Koblitz and 
Rohrlich [6] was used to classify the modular invariants when the height (to be defined 

in Section 2) is prime to 6 [4]. Our first aim in this paper is to explore this connection in 
more detail. In particular, we shall show that su(3) conformal field theories and Fermat 

curves have striking similarities that might go beyond the above observation, but they have 

important differences as well. Also, quite unexpectedly, the problem of rational triangular 
billiards [7] is naturally related to the parity rule and to modular invariants. 

We will present a certain number of"strange coincidences", relating in a curious way the 
three topics we discuss in this article, namely the su(3) models, the complex Fermat curves 

and the triangular billiards. These observations take place at various levels, but as intriguing 

as they may be, they remain obscure. In fact the obvious observation that conformal field 

theories are often organized in families (indexed by the level for Wess-Zumino--Novikov- 
Witten models, or the degree of Fermat curves for instance) is the starting point for other 
puzzling remarks. The paper is organized as follows. 

Section 2 is a general reminder of conformal theories with an affine Lie algebra, which 

we take to be su(3) for definiteness. The material is not new, but presented in such a way 
as to emphasize the links with Fermat curves. This section contains a short review on the 
modular group and the modular invariance problem, and recalls the parity selection rule. 
We also prove some character identities related to lattice summations. 

Section 3 is an introduction for non-experts to the geometry of complex Fermat curves 
and their Jacobians. Complex multiplication in Abelian varieties is briefly discussed. Again 
there is no claim to originality. We present the criterion of Shimura-Taniyama to study the 
isogeny classes of Abelian varieties and we show its equivalence with the parity rule for 
su(3). 
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In Section 4, we start with a short introduction to the notion of "dessins d'enfants" (see 
for instance the collective contribution [8]). They give a convenient framework to discuss 

combinatorial and analytic aspects of certain (special, but ubiquitous for the objects we 

study) ramified coverings between Riemann surfaces. This general discussion puts on the 
same footing Fermat curves and their holomorphic differentials, rational triangular billiards 

and some aspects of their trajectories. We then attempt to make a list of similarities between 
su(3) affine characters and holomorphic differentials on Fermat curves. In particular we 

show that the identity block of the exceptional modular invariants for su(3) is encoded 
in a sequence of rational maps between the degree 24 Fermat curve and algebraic curves 

associated with rational triangular billiards. We also show that holomorphic differentials 

on Fermat curves can be reinterpreted, via uniformization theory, as modular forms that 

share some of the properties of the su(3) characters, and for which we solve the modular 

problem. 
Finally we explore in Section 5 the algebraic consequences of the fact that the genus one 

characters of an arbitrary rational conformal field theory are automorphic functions for a 
finite index subgroup of the modular group. We prove that the characters are all algebraic 

over Q( j ) ,  a property that allows to associate a well-defined Riemann surface with any 
rational conformal field theory (or with any chiral.algebra). We study some general features 
of the Riemann surfaces arising in this way, and show how they can be computed in actual 

cases. This is illustrated by determining the surface associated to the su(3), level 1 (su(3), 

level 2, is relegated to a separate appendix). 
There are two appendices containing technicalities and computational details. 

Claude Itzykson's premature death is a tragedy for his friends and collaborators. This 

article tries to address questions that were raised more than three years ago and Claude par- 
ticipated very actively in the early stages of this work. He not only did actual computations 

(the link between billiards and blocks of modular invariants is only one of those), but he 

also pointed out some possible hidden facets of the problem. We tried to put his ideas in a 
form as close as possible to Claude's standards. Anyway, it is fair to say that he should be 
credited for most of the ideas while the other authors should be blamed for the inaccuracies. 
We miss him very much. 

2. Modular invariance for su(3) theories 

We review in this section the basic features of affine Lie algebras and the problem of 
modular invariance. We will mainly consider the so-called untwisted su(3) affine Lie al- 
gebra, but most of the material presented here has straightforward generalizations to other 
algebras [9-11]. 

2.1. Affine representations 

The Wess-Zumino-Novikov-Witten (WZNW) models are rational conformal theories 
which describe two-dimensional massless physical systems possessing an affine Lie algebra 
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as dynamical current symmetry [ 10,12,13]. The building block for the chiral algebra per- 

taining to the su(3)-based models is the current algebra known as su(3)k 

[xl, y m ] = [ x , y ] l + m ÷ k l ~ l + m , O ( x , y ) ,  x , y ~ s u ( 3 ) ,  1, m ~ 7 / .  (2.1) 

k is a central element, [k, xt] = 0, called the level, and (-, -) is the Killing form on the 

finite-dimensional algebra su (3). The full symmetry algebra .A is built on the direct product 

su(3)k ®I su(3)k, where ®1 means that the central extensions are identified. An appro- 
priate completion of the enveloping algebra of  (2.1) contains a central extension of the 

conformal algebra with central charge Ck = k d i m s u ( 3 ) / ( k  + g) - 8 - (24/n) ,  where 
g = 3 is the dual Coxeter number of su(3) and n - k + 3 is called the height. If we 

write x(z)  = Z m  XmZ-l-m, the Virasoro algebra is generated by the density L(z)  = 

Z m  tm z-m-2 = or: (x(z), x(Z))" for a suitable choice of the constant c~. One traditionally 
denotes the generators of  the symmetry algebra ,,4 by xt ® Ym, and those of the Virasoro 

algebra by Lt ® Lm. 
The Hilbert space 7-/of the theory is the direct sum of highest weight A-modules: 

7-[ = ~ Np.p, T~p ® T~p, (2 2) 
p,p' 

with Np, p, 6 N giving the multiplicities. If one requires that the representations ~ p  be 

unitary, as appropriate in the case of  W Z N W  models which are unitary field theories, the 

level hence the height must be a positive integer (implying ck >_ 0), and only a finite 
number of  representations are possible. They are labeled by strictly (i.e. shifted) dominant 
su(3) weights p = (r, s) whose Dynkin labels satisfy r + s < n. For what follows, it is 

convenient to introduce a third label t = n - r - s, which can be interpreted as the zeroth 
label corresponding to the extra affine fundamental weight [9], and define the alc6ve as the 
set of triplets (or affine weights) 

Bn = {p = ( r , s , t ) : r , s , t  > 1 a n d r  + s  + t  = n } .  (2.3) 

Bn consists of  the portion of the su(3) weight lattice that lies in the interior of  the region 

delimited by the three lines (affine walls) Oil • p = o t 2  • p = ~ • p - n = 0 (oti's are the 
two simple roots and ~p is the highest root). Equivalently, Bn is a fundamental domain for 
the action of the affine Weyl group Wn on elements of  the weight lattice with a trivial little 

group. Its cardinality is ½(n - 1)(n - 2). 
In addition to being graded by a Cartan subalgebra of  su(3),  which is the reason why 

we could label the affine representations (and all their states) by weights, all modules 
7~p are graded by L0. On 7~p, the spectrum of L0 is equal t o  hp ÷ ~, with hp given by 
(p = ½ 

p2 p2 r 2 + rs + s 2 1 
- -  - -  ( 2 . 4 )  hp = h(r,s) 2n 2n 3n n 

It follows that hp > 0 for all p except p = (1, 1) for which h(l,l) = 0. The vacuum of 
the theory, which is annihilated by L0 due to the global conformal symmetry, necessarily 



138 M. Bauer et al./Journal of Geometry and Physics 22 (1997) 134-189 

belongs to the A-module ~(1,1) ® 7Z(1,1). Its uniqueness then implies that we should impose 

N(1,1),(1,1) = 1. 
In complete analogy with the finite-dimensional Lie algebras, one defines the character 

Xp of the representation T~p as the function 

O0 

gp(q, M) = Tr~p(qL°-ck/24M) = qhp-ck/24 Z Trm(M)qm' Iq] < 1. (2.5) 
m = 0  

The notation T r  m m e a n s  that one traces over the subspace of Re  where L0 ---- hp + m. In 
(2.5), M is a function which takes its values in the Cartan subalgebra. A traditional choice 
is M = exp (i Zj zjnj), in which case one can show that, as functions o fq  and zj, the Xp 
are linearly independent as p runs over Bn. 

We will exclusively use the specialized (or restricted) characters Xp (q) - Xp (q, I). They 
can be very explicitly computed from the Weyl-Kac formula [9]. If we denote the coroot 
lattice by R, the formula yields in the case of su(3): 

X(r,s,t)(q) = [r/(q)] -8 Z l ab(a + b) q (a2+ab+b2)/3n, (2.6) 

(a,b)=(r,s)+nR 

where r l(q) = q 1/24 I-In_>l(1 - q m) is the Dedekind function. Note that the charge conju- 
gation C(r, s) = (s, r) stabilizes Bn, and also leaves the specialized characters invariant: 
Xp = XCp. In the case of su(3) and for fixed n, there is no other linear relation among the 
specialized characters, but, as we will show in Section 5, any two of them are algebraically 
related (they satisfy a polynomial equation with coefficients in Q). However there are linear 
relations among characters corresponding to different values of n, as we now show. 

Let us define the functions.T[~,ls,t) (q) -- [7 (q)]8X(r,s,t) as the numerators of the characters. 
A 

We added an extra superscript n to stress the height dependence. Let Wn be the affine Weyl 
group corresponding to height n, that is, Wn is the semi-direct product of the finite Weyl 
group (the symmetric group $3 for su(3)) by the group n/~ of translations by n-multiples 
of coroots. Let e(w) be the parity of a Weyl transformation. Then for all integers j in M* 
and all p in Bn, we claim that the following relations hold: 

"T'p Inl(q) = ZA 6(w) ff~[jnl'w(P) tq j'). (2.7) 

w~Wn 
w(p)~Bjn 

The proof is easy. First of all, formula (2.6) allows to extend the functions Xp to the whole 
weight lattice, but one may check that Xp+nk = Xp and Xw¢p~ = e(W)Xp for any (finite) 
Weyl transformation. In particular, if p lies on a boundary of Bn, o n e  has Xp(q) = 0 
identically. Obviously, the functions .T'p In] have the same properties. The sum over (a, b) - 
(r, s) ~ nR can be split into a sum over the classes {nF + n jR]  for ~ ~ R/ jR ,  from which 
it follows that 

"T'p [n](q)= Z ffc[jnl'j'P+n~ tq ) = Z ~(Wr)'T'[wJT(]P+n~) (qj)" (2.8) 



M. Bauer et al./Journal of Geometry and Physics 22 (1997) 134-189 139 

The last equality is proved by observing that, although p + n? is not in Bjn, there exists a 

Weyl transformation w~ i n  ~rjn such that w~(p + n?) is in Bin. S i n c e  W j ~ C  ~'rn, the j2 

weights W~(p + n~) are images of p under affine Weyl transformations of Wn. Conversely, 

the intersection Wn (P) M Bjn is precisely equal to these weights, and formula (2.7) follows. 
Another straightforward consequence of (2.6) is the identity 

~j[jn]. , j3 .u;nl(qJ). (2.9) p tq) = 

Combined with (2.7), it leads to an identity for the characters 

x;nl(q) = ~ ~ 8 [ j2nl  • * .  (w)Xjw(p)(q) Vj E (2.10) 

w6Wn 
w(p)EBjn 

These formulas, written here for su(3), have a strict analog in more general algebras, and 

constitute the generalization of relations that have appeared in [ 1 ] in the case of su (2). 
As illustration, we write the relations for j = 2 and j = 3 in the case of su(3): 

[n] . [4n] . [4n] . [4n]  . [4n] 
X(r , s  ) = X(2r ,2s  ) -t- ~(2s+2n,2t) "~- X(2t,2r+2n) -- ~(2n-2s,2n-2r)' (2.1 1) 

2 .  [hi . [9n] . [9n] . [9n]  [9hi . [9n]  
l X(r,s) = X(3r,3s)  -}- g(3s+3n,3t) -t- X(3t,3r+3n) q- X(3r+3n,3s+3n) -~- X(3s,3t+6n) 

. [ 9 n ]  . [ 9 n ]  . [ 9 n ]  . [ 9 n ]  (2.12) 
-t- ~(3t+6n,3r) -- tI(3n-3s,3n-3r) -- X(3n-3r,6n-3t) -- ~(6n-3t,3n-3s)" 

[31 = 1, one obtains linear relations between affine characters Setting n -= 3 and using X(l,,) 
and the constant function. It is amusing to note that the above relation for j -- 2 and n = 3 

is precisely the one Moore and Seiberg used to discover the exceptional su(3) modular 

invariant at height k + 3 = 12 [14], namely 

X(2,2,8)  -t- X(2,8,2)  q-  X(8.2,2) - X(4,4,4)  = 8 .  (2.13) 

2.2. Modular invariance 

Besides their group theoretical importance, the characters are intimately related to the 

partition function of physical models on Riemann surfaces. The simplest and by now classi- 
cal case, namely tori, has been first considered in [15]. There it was shown that the partition 
function of a rational conformal field theory put on a torus C/Y + r77 of modulus r,  has the 

general form 

Z(z )  = Tr~(q L°-c/24 ® ~ L 0 - c / 2 4 ) ,  ( 2 . 1 4 )  

where the complex number q is related to the modulus of the torus by q = e 2 i n r  . The 

trace is taken over the Hilbert space of the model, and ~ is the complex conjugate of q. In 
virtue of the decomposition (2.2) - it is completely general, just insert the representations 

of whatever the symmetry algebra ,A is - one obtains 

Z(r )  = Z Np,p, Xp(q) Xp'('q). (2.15) 
p,p~ 
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The problem of modular invariance stems from the fact that the same torus may be given in 
terms of a whole class of moduli, namely all r related by PSL2(Y-) transformations, also 
known as modular transformations, in fact specify a single toms. Which representative one 
chooses in this class should not affect the physical partition function, and as a consequence, 
it must be modular invariant, Z(r )  = Z( (a r  + b ) / ( c r  + d)). It is actually sufficient to 
check the invariance of the partition function under S : r  --+ - 1 / r  and T ' r  ~ r + 1, 
since together they generate the whole of P S L 2 ( Y )  = (S, T I S 2, (ST)3) • This is what the 
modular invariance (on the toms) requires: to check that the partition function satisfies 

Z ( r )  = Z ( r  + I) = Z ( ~ )  . (2.16) 

But in fact this argument can be turned around. Since the partition function must have the 
general form (2.15), the modular invariance constrains the choice of the integers Np,p,, and 
hence the model itself. This is how the criterion of modular invariance led to the possibility 
of classifying the consistent (candidates of) eonformal theories. It turns out that the modular 
invariance is a fantastically strong constraint, as very few choices of integers Np,p, lead to 
modular invariant partition functions. In.~e first case for which the classification has been 
carried out, namely .A = su(2)k @t su(2)k, unexpected connections emerged with other 
mathematical areas. Indeed the results showed that the list of su(2) modular invariants is 

isomorphic to the list of simply laced simple complex Lie algebras ADE (or equivalently 
to the list of finite subgroups of SO(3)) [I]. This surprising correspondence has remained 
largely mysterious (see [ 16] however), but prompted further investigations. As far as affine 
Lie algebras are concerned, the next case is su(3). Here too the complete list is known for 
all levels [2], but it shows no obvious pattern. An attempt to link the structure of modular 
invariants (for su(3) and more general cases) to graphs has been made in [17]. Based on 
technical similarities, another connection was suggested in [4], which relates the affine 
su (3) modular problem to the geometry of the complex Fermat curves. This connection is 
precisely the problem we want to address in this article. 

It would probably be inspiring to see the solution to the modular problem for higher rank 
affine simple Lie algebras, but no complete list is known beyond rank 2. Partial results for 
affine algebras include: all simple algebras at level 1 [3], all s u ( N )  algebras at level 2 and 
3 [18], products ofsu(2)  factors with the restriction gcd(ki + 2, kj + 2) < 3 (except for a 
product of two factors for which the classification is complete) [ 19]. Other approaches to 
the classification problem have produced complete lists of modular invariants of specific 
types [19-21]. 

One may check the modular invariance of Z( r )  by looking at the way the affine charac- 
ters transform [9]. From the general form (2.5) of the characters, the transformation under 
T is easy to compute, while that under S can be obtained from the Poisson formula. The 
results show that the characters gp, for p E Bn, transform linearly under a modular trans- 
formation, Xp(Xr )  = y~p, Xp, p Xp' (r) for X in PSL2(~_). For su(3) the explicit matrices 
representing T and S read 

Tp,,p = e 2izr(hp-ck/24) 8p,p, ~- ~ r2 +sz +rs-n Sp.p, , (2.17) 
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(2.18) 

with ~ = e 2in/3n and ( = ~3. The two matrices are symmetric and unitary, and satisfy 

S 2 = (ST) 3 = C with C the charge conjugation, so that S and T generate a representation 

of  SL2(7/) rather than PSL2(~-) .  It has been proved in [9,22] that the kernel of  this rep- 

resentation is of  finite index in SL2(71), for any value of  n, and is even contained in some 

principal congruence subgroup, but a precise description of  these kernels is still lacking. An 

obvious relation is T 3n = 1, and it is not difficult to see that no smaller power of  T equals 

1 (except for n = 3). One can also show that for n > 5, no power T a for a < 3n has all 

its eigenvalues equal because this would mean that a(3 - n), a(7 - n), a(12 - n) are equal 

modulo 3n, which implies that 3n divides a. On the other hand, T 3 is central for n -- 4. 

Inserting the modular transformations of  the characters into the partition function, one 

finds that Z(~) is modular invariant iff the matrix Np,p, satisfies T N T  t = S N S  ~ = N ,  

or, by using the unitarity of  S and T, iff N is in the commutant of  the representation of 
PSL2(7 / )  carded by the characters 3 

Z ( r )  modularinvariant ~ ~. [ N , T ] = [ N , S ] = O .  (2.19) 

The commutant of S and T, without imposing the positivity condition Np,p, > 0, has been 

worked out in full generality for the affine Lie algebras of  the s u ( N )  series [22], but the 

results extend trivially to all algebras• It was found that the commutant over C actually has 

a basis of  matrices with coefficients in ~ ,  and also that this commutant is rather big. Its 
dimension is an arithmetic function, growing roughly like n 2 N - 5 / N !  for s u ( N )  at level 

k = n - N [23]. In view of  the fact that very few modular invariant partition functions 

satisfy it, it shows that the positivity condition is really the crucial one, and also the most 

difficult to handle. Recent developments have shown that the most efficient way of  dealing 

simultaneously with the commutation and with the positivity conditions is to use Galois 

theory techniques, which beautifully combine the algebraic nature of  S with the rational 

character of  Np,p,. Before we review these aspects in the next section, we mention another 

feature of  the modular matrices S and T. 

When n is coprime with 3, S and T have a property which is useful in actual calculations, 

namely they can be written as tensor products• From the above formulas, one may check 

that under the cyclic rotation #(r ,  s, t) = (t, r, s), an automorphism of the extended Dynkin 
diagram of  su(3), one has, for 09 = e 2 i z r / 3  

Tl~(p),lz(p ) = o) n - r - 2 s  Tp,p ,  Sp.l.t(p, ) = (9 r+2s Sp.ff  . (2.20) 

3 The partition function is given in terms of the specialized characters, on which the charge conjugation C 
is trivial. 
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The quantity r + 2s taken modulo 3 is the triality of  p. When n and 3 are coprime, # acts 

on the weights of  Bn without fixed points. Thus if one splits Bn into orbits under the action 

o f #  by writing p = #k(r )  for k = 0, 1, 2 and r ~ Bn / (# )  of zero triality, one obtains 

k2nc" r" 
T k(r),uk,(r, ) : [09 Ok,k ) Tr, r', Suk(r),#k'(r, ) : 09 nkk' Sr, r'. (2.21) 

The same property holds in su (N) ,  level k, whenever N and n = N + k are coprime. 

2.3. Galois and parity selection rules 

Perhaps the most remarkable property of  the modular matrices S and T is that they 

are rational combinations of  roots of  unity, in this case 3n-roots of  unity [24]. Even more 

remarkable is the fact that this situation is completely general: any RCFT has matrices S 

and T that have their coefficients in cyclotomic extensions of  finite degree over Q. For T, 

it follows from the fact that in a RCFT, the Virasoro central charge c and all conformal 

weights are rational numbers [25]. The corresponding result for S has been proved in [5], 

whose authors built on results from [26]. 
Let us first fix our notations concerning cyclotomic extensions. For (m = e2iTr/m, we will 

denote by Q(¢m) the cyclotomic extension of  the rationals by m-roots of  unity, of  degree 

~0(m), the Euler totient function, over Q. Its Galois group GaI(Q((m)/Q) consists of  the 

automorphisms crh ((rn) = (m h for all integers h between 1 and m, coprime with m. The 

Galois group is Abelian, isomorphic to Z* = (Y_/mZ)*, the group of  invertible integers 

modulo m. 
The Galois automorphisms of  the algebraic extension where the coefficients of  S lie, have 

important consequences for the modular problem, which we now summarize. Each element 

of  the Abelian Galois group of  the relevant extension induces the unique permutation of  the 

weights of  the alc6ve cr : p --+ a (p) (we keep the same name for the element of  the Galois 

group and for the induced permutation), such that 

tT(Sp, p,) = ecr (p)Sa(p),p, = ea (p')Sp,~r(p,), (2.22) 

where e~ (p) = • 1 is a cocycle satisfying e,r,r, (p) = e~ (p)ea, (tr (p)). Acting with tr on the 

commutation relation [N, S] = 0 and using the fact that the coefficients Np,p, are rational 

numbers, one obtains that N must satisfy [5]: 

Nt~(p),tr(p') -~ e a ( p ) e o ( p ' )  Np,p ,  , for all or. (2.23) 

This equation is a necessary condition for N to commute with S. Its importance for the 

modular problem is obvious. Since the entries of  N are to be non-negative integers, it leads 
to the selection rule: 

Np,p, = 0 as soon as there is a t r  for which e~(p)e~(p  I) = - 1 .  (2.24) 

Its utility is two-fold. First, it turns out to be extremely restrictive, forcing most of  the 
coefficients to vanish. Even though in actual cases, it may not be easy to determine which 
coefficients may or may not vanish, it still remains much easier than the commutation 
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problem. Second, it facilitates enormously computer searches, because in the examples we 

know, which include all affine algebras, to check the sign of  e~ (p)e~ (p') is computationally 

trivial. The first use of  (2.24) was made in the restricted context of  su(3), n prime [27], 

where, however, neither its generality nor its Galoisian origin were recognized. They were 

later generalized to all affine algebras in [3,4], and eventually to all RCFT in [5] where the 

Galoisian nature of  the result was transparently brought out. 

From formula (2.18) for the matrix S, in which one may neglect the prefactor - i / n x / 3  
since one is interested in commuting N with S, the action of  the Galois automorphism Crh 

amounts formally to multiply the weight p (or p ' )  by h: Crh (Sp,p,) = Shp,p,. This action of 

trh is only formal since in general hp is not in the alc6ve Bn. However one can show that h 

being invertible modulo n ensures there is a unique affine Weyl transformation which maps 

hp on some weight trh (p) of  Bn, so we can write 

~h(P) = Wh,p(hp) + not, w E W, ot ~ R. (2.25) 

One then obtains from (2.18) 

~h(nx/r~Sp,p ' )  = Z 8(w)e--2ilrah(P)'(Wh'p°W)(P')/n = 8(Wh'P) (nx/~gah(P),P ')" 
wcW 

(2.26) 

Therefore the permutation of  Bn induced by an element of  the Galois group is given in 

(2.25), and the cocycle is just the parity of  the Weyl transformation defining the permutation, 

Cob(P) = e(Wh,p), up to the sign ~h(~-Z-3)/~--3, that only depends on h. The same is 
true of  any affine algebra. For that reason, the cocycles have been termed "parities" in the 

literature. 

We finish this section by showing how the parities can be computed in the case of  su (3). 

The general algorithm for computing both ~h (P) and e~ h (p) in the su (N) series has been 

given in [4]. The sign e~ h (p) = 4-1 is the signature of  the Weyl transformation which maps 

the weight hp back in the alc6ve. By extension, one can assign all weights a parity e(p), 

which is just the signature of  the Weyl transformation which maps p back in the alc6ve. 

It is well defined only for those weights which do not lie on the affine walls, since they 

would be fixed points of  odd Weyl transformations. For su(3) it means that the parity of 

p = (r, s, t) is well defined iff r, s, t :~ 0 mod n. If  p is in a wall, we set e (p) = 0. We have 

e(p) = +1 for all p in Bn. A translation by not, ot a coroot, being even, the parity does not 

change under such translations, e(p + not) = e(p), so that we may restrict our attention to 

the six triangles obtained from Bn by the action of  the finite Weyl group. Up to translations 

by elements of  n/~, the even Weyl transformations map Bn onto 

Bn = {(r, s): r, s > 1, r + s < n - 1}, (2.27) 

WlW2(Bn) + n(otl + ot2) = {(n + s, n - r - s)}, (2.28) 

w2wl(Bn) + n(otl + ot2) = {(n - r - s, n + r)}. (2.29) 

We note that if p is in Bn, then p + (n, 0) and p + (0, n) are, respectively, in the second 

and third triangle, so we conclude that the parity of p = (r, s) depends only on the residue 
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((r), (s)) modulo n of  p. From the above discussion, (r), (s) and (r + s) are all different 

from zero modulo n for any weight which is not in an affine wall. If  we take the residues 

(.) in [0, n - 1], two possibilities remain. Either (r) + (s) < n, in which case the parity 

e(p) = +1 since the weights in Bn satisfy this inequality, or else (r) + (s) > n and 

e(p) = - 1 .  In the first case, (t) = (n - r - s) = n - (r) - (s), while in the second case, 

(t) = 2n - (r) - (s). Putting all together, one obtains the parity function 

0 if (r) = 0 or (s) = 0 or (t) --= 0, 

e ( p ) = e ( r , s , t ) =  +1 if (r) + (s) + (t) = n, (2.30) 

- 1  i f ( r ) + ( s ) + ( t ) = 2 n .  

Let us summarize the su(3) parity selection rules. With each Galois automorphism ah is 

associated an integer h, coprime with 3n. Given a weight p in the alc6ve Bn, we compute 

for each h the parity e(hp) from formula (2.30). The parity depends only on the residue 

of  hp modulo n, so we may take h between 1 and n. In this way, we obtain a finite se- 

quence {e(hp) = -4-1 }h. The parity selection rules then say that the coefficient Np,p,  in the 

modular invariant partition function may be non-zero only if the two sequences {e(hp)}h 
and {e(hp~)}h are equal, componentwise. Equivalently, if we collect the h 's  for which 

e(hp) = +1 by defining 

l i p  = Hr, s,t : {h E 7/*: Ihr) + (hs) + (ht) : n}, (2.31) 

the selection rules imply 

Hp ~ Hp, .~ Np,p, = 0. (2.32) 

In this form, the parity condition appears in a completely different context, namely the 

study of  the complex Fermat curves, of  which it govems the decomposition. 

3. Fermat curves 

The parity rule is extremely powerful for the problem of modular invariance. It is a 

sufficient condition for N, the matrix specifying a modular invariant, to commute with S, 

and is not concerned at all with the commutation with T. Hence fulfilling the parity rule 

does not involve the full complexity of  finding the commutant of  S (let alone of  S and T), 
but at the same time is constraining enough to encapsulate much of  the structure of  the 

commutant. On the practical side, this makes it a prime tool, as witnessed by the latest 

developments [18,28,29], while conceptually, its Galoisian origin and its universality [5] 
also yielded a renewed viewpoint. 

As noted in [4], the parity rule for su(3) is very peculiar as it has also a key role in the 

understanding of  the geometry of  the Fermat curves, and more specifically, in the decom- 
position of  the Jacobian of  the Fermat curves into simple factors [6]. There is no apparent 

reason for this, and whether this relationship is deep or accidental was the original motiva- 
tion for our investigations. There is no indication a priori why the Fermat curves should have 
anything to do with the partition functions of  su (3) CFTs on toil (other curves have, as we 
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shall see in the Section 5). It is the purpose of  this section to merely describe the connection. 

We follow the original or standard material available in the mathematics literature with a 

presentation which has no claim to rigor and is directed towards the application at hand. 

We refer to the original articles for further (and perhaps more accurate) details. 

3.1. Abelian varieties 

A complex Abelian variety of  dimension g is a complex torus C g / L  equipped with a 

Riemann form [30]. L is a lattice (a discrete free Abelian group of rank 2g over 7/), and 

the existence of  a Riemann form means that there is a positive definite Hermitian form on 

C g, of  which the imaginary part takes integral values on L. A prime example, though not 

generic, of an Abelian variety is the Jacobian of  a Riemann surface. As this example is most 

relevant to us, we will describe it in more detail. 

If r is a compact Riemann surface of  genus g, it is well known that the homology group 

of  Z' has 2g independent cycles Yi, and that the vector space of  holomorphic 1-forms has 

dimension equal to g. A period of  27 is the g-tuple (f× col . . . . .  f× O)g) for some cycle 

F, where the o9i form a basis for the holomorphic differentials. The period lattice is the 

collection of all periods 

. . . . .  , 

For any fixed point P0 on the surface, it follows that the map (called the AbeI-Jacobi map) 

(iy J) P ~ E i ) J ( P )  = 091 ,  OJ 2 . . . . .  O)g (3.2) 

eo Po 

is well defined modulo the periods (i.e. does not depend on the path from P0 to P), and pro- 

vides an embedding of  the surface into the factor group Jac(27) = Cg/L(27),  the Jacobian 

of Z'. Clearly, for g > 1, the map J ( P )  is only an embedding, but if we extend the map J 

to Jg by setting 

P = (Pl,  P2 . . . . .  Pg) i ~ Jg(P) = J(P1) + J(P2)  + " "  -k- J(Pg)  E Jac(Z?), 

(3.3) 

then a fundamental result of Riemann, anticipated and proved in specific cases by Jacobi, 

asserts that the map Jg is invertible for "generic" points P in the gth symmetric power 

of  Z', Symg 27 = 27g/sg (Sg is the permutation group on g letters). Torelli theorem then 

shows that the isomorphism class of  the Jacobian in fact determines that of the Riemann 

surface. Thus the Jacobian captures the essential features of the surface, and, being an affine 
space, provides a kind of  linearization of  it. Taking advantage of that, attention is sometimes 

focussed on the Jacobians rather than on the surfaces themselves. For elliptic curves (g = 1 ), 
this is what one is used to, as the curve is isomorphic to its Jacobian, usually described as 
a parallelogram with sides 1 and r. 
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An important notion in the study of Abelian varieties is that of  isogeny [31,32]. A map 
4~ : A ~ B is an isogeny if it is a surjective homomorphism with finite kernel. Isogenies go 

both ways: if4~ is an isogeny from A to B, there exists another one q~ from B to A. When there 

are isogenies between them, we say that A and B are isogenous and write A ~ B (ifA and B 

are Jacobians of  algebraic curves, we say by extension that the two curves are isogenous). 
Being isogenous is an equivalence relation. For what follows, it may be convenient to 
rephrase these properties in terms of lattices. If  we view Abelian varieties as complex tori, 

say A = Cg/LA and B = Cg/LB, an equivalent definition is that A is isogenous to B if 
and only if there is a complex linear map ~p such that ~(LA)  C LB with finite index, say 

m. I f  this is the case, one has mLB C LA, which explicitly displays an isogeny from B to 

A, and shows that isogenies define an equivalence relation (reflexivity and transitivity are 

trivial). We then say that the lattices are isogenous, LA "~ LB. For instance, in the elliptic 

case for which the complex lattice L can be written L ( r )  = {awl + bo92: a,  b E 7/} with 
r = o92/o91 ~ R, two lattices L ( r )  ~ L ( r  ~) are isogenous if and only if 

r ' - -ar+bcr+d f ° r s ° m e ( a ~ )  i n G L 2 ( Q ) '  

The following results show the importance of isogenies. It may happen that an Abelian 
variety A contains a non-trivial Abelian subvariety A1. If A = Cg/LA, it means that there 

is a complex vector space V1 = C h C C g such that V I A  LA =- LAI is a lattice in V1 
(of rank 2h). Then the orthocomplement of  Vl with respect to the Riemann form, call it 

V2, has the same property: V2 A LA =~ LA2 is a lattice in V2 (of rank 2g - 2h). Hence 

LA I ~ LA2 is of  finite index in LA,  and A is isogenous to V1/LAI × V2/LA2 ==- A! × A2. 

Moreover, the Riemann form on A induces by restriction a Riemann form on A1 and A2, 
so that they are themselves Abelian varieties. (Note that A being a Jacobian does not imply 

that A1 and A2 are Jacobians.) Repeating this decomposition process as many times as 
possible, one eventually finds that an Abelian variety is isogenous to the product of  simple 
Abelian varieties, where simple means that they contain no proper complex torus. This is 

the complete reducibility theorem [31,32], due to Poincar6. Moreover this decomposition 
is unique up to isogenies. 

Decomposing into simple factors the Jacobians of  the Fermat curves, defined in affine 
coordinates by 

Fn:x n + y n =  I, n in teger  (3.4) 

was precisely the purpose of, first, Koblitz and Rohrlich [6], who partially resolved it, and 
then of Aoki [33]. We are now in a position to detail their work, and the relation to the 
problem of modular invariance for su (3). 

3.2. Jacobians 

The periods of  the Fermat curves have been computed by Rohrlich [34]. A basis for the 
holomorphic differentials on Fn is obtained by taking o9r,s,t = ~lr, s , t  X r - 1  yS-n dx, for all 
admissible triplets (r, s, t), i.e. those such that 0 < r, s, t < n and r + s + t = n (see 



M. Bauer et al./Journal of Geometry and Physics 22 (1997) 134-189 147 

also Section 4.2). Its dimension equals the genus of Fn, namely l ( n  - 1)(n - 2). This 

is also the cardinality of the fundamental alc6ve for su(3), height n. A suitable choice 

for the normalization constants ar, sj yields the following result for the integration of the 
differentials along closed curves: 

f ~.ri+sj O)r,s,t = b n  , 1 < i, j < n, (3.5) 

Yi,j 

where {Yi,j } l < _ i , j < n  is a generating set of  closed loops [34]. Every cycle in Hj (Fn, 7/) can 

be written y = Z i , j  mi,j Yi,j, SO the period lattice of  the nth Fermat curve is 

L ( f n ) = [ (  . . . .  Zmi'j(ri+sJi,j  . . . .  ) O<r,s.t<n : m i , j G T / ] .  ( 3 . 6 )  

When all mi,j are varied over 77, it is clear that the (r, s, t)th component of  the period 

lattice covers the whole of  7/((,,o), for no defined by gcd(r, s, t) ---- n/no. If however two 

triplets are related by (r ' ,  s ' ,  t ' )  = ((hr),  (hs), (ht)) for some h c 7/* 0, the (r ' ,  s ' ,  t ' ) th 
component of L(Fn) is just the Galois transform by crh of the (r, s, t)th component, so that 

the two are not independent. The triplet ((hr), (hs), (ht)) is admissible if h is in the set 4 

Hr, s,t = {h ~ 7/*0: (hr) + (hs) + (ht) --- n}. (3.7) 

We saw in Section 2 that Hr,s,t was crucial for the su(3) parity rule, and in fact we shall see 
that it also governs the decomposition of the Jacobian of the Fermat curves. For the moment  

we note that h ~ Hr, s,t is equivalent to - h  ~ Hr,=,t, so Hr,sa is a set of  representatives of 

7/~o/{+1}. 
If {er, s,t: admiss. (r, s, t)} is the canonical basis of C g,  a simple reordering leads to the 

following writing: 

C g--~ ~ C er, s,t = ~ ~ C e(hr),(hs),(ht), (3.8) 
admiss. (r,s,t) [r,s,t] hEHr, s,t 

where Jr, s, t] is the class {((hr), (hs), (ht)): h 6 Hr,s,t}. Using the same reordering on the 

period lattice, one easily sees that 

L(Fn) C ~ Lr, s,t, (3.9) 
[r,s,t] 

where 

Lr, s,t = {( . . . .  ~rh(Z) . . . .  )hEHr,=,,: Z ~ 7/((n0)}. ( 3 . 1 0 )  

Note that the right-hand side of  (3.9) is well defined because Lr,s,t -~ Lr',s',t' if the two 
triplets belong to the same class [r, s, t] (a consequence of H{hr},(hs),(ht ) = h -1 nr, s,t). The 
inclusion (3.9) holds with finite index, since both lattices have the same rank over 7/, 

(n - 1)(n - 2) = Z <p(n0). (3.11) 
[r,s,t]EBn 

4 If  no < n, the set defined in (2.31) is the tr ivial  extension modu lo  n of  the set def ined here. 
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Consequently the period lattice L(Fn) is isogenous to the direct s u m  ~)Lr,  s,t, and from this 
follows the isogeny [34]: 

Jac(Fn) = Cg/L(Fn) ~" 17  (C~°(n°)/2/Lr's't)" (3.12) 
[r,s,t] 

This shows that the (Jacobian of the) curve Fn is far from being simple, but has a number 

of  factors increasing (at least) linearly with n. It is not difficult to compute the number of  
factors in (3.12). For n = I-I pk, one finds 

#classes  [r, s, t] = 1-I [Crl (Pk)  + t r l ( p k - 1 ) ]  --  3tr0(n) + 2, (3.13) 
P 

where trk (n) is the sum of the kth powers of  all divisors o fn  (including 1 and n). I fn  is prime, 

there are ( n - 2 )  classes, which can be chosen as [ 1, s, n -  1 - s ]  fors  = 1, 2 . . . . .  n - 2 .  Other 

particular values for the numberofc lassesare  1, 3, 10, 12, 34, 88 forn = 3, 4, 6, 8, 12, 24, 
respectively. 

Let us mention that in case n is a prime number, Weil has shown that Lr, s, t is in fact the 
period lattice of  the following curve [35]: 

Cr, s , t (n)  : v n = ur (1 - u)  s. (3.14)  

This is not true in general as the genus of (the irreducible part of) Cr, s,t (n), equal to 

g(Cr,s,t(n)) = l(no - 1) - ½[gcd(n0, r)  + gcd(n0, s) q- gcd(n0, t) - 3], (3.15) 

is generically different from ½~0(n0). What is true for general n is that Cr, s, t (n) is the image 
of Fn under the rational map (x, y) ~ (u, v) = (x n, xryS), so that the Jacobian of Cr, s,t (n) 
is contained in that of  Fn [34]. There is also a rational map from Fn to Fd for every divisor 
d of  n (namely the n/dth power map), - implying in particular Jac(Fd) C Jac(Fn), see e.g. 
(3.36) below - so altogether there is a sequence of rational maps 

Fn , {Fd} > {Cr,s,,(d)} for anydln.  (3.16) 

The curves Cr, s,t (n) have been extensively discussed in [7] in the context of  rational bil- 
liards. There Cr,s,t (n) was associated (through a Schwarz transformation) with the rational 
triangle of  angles rrr/n, szr/n, tzr/n. For that reason, we call them triangular curves. We 
will come back to them in Section 4.3, where we will show that some of the triangular 
curves which are rational images of  F24 are intimately related to the exceptional modular 
invariants of  su(3), occurring at n = 8, 12 and 24. 

3.3. Complex multiplication 

The main result of  the previous section was the decomposition (3.12) of  the Jacobian of 
Fn. The question that remains is whether this decomposition is complete. 

Let A = C n / L  be an Abelian variety. The endomorphisms of A, denoted by End(A), are 
the complex endomorphisms of C n fixing the lattice L, and have a ring structure. It is clear 
that End(A) contains Z, realized as the multiplication of the elements of  A by integers, and 
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that 7/is central in End(A). One may broaden the class of transformations and consider 

endomorphisms of A up to isogenies, or equivalently endomorphisms of the isogeny class 

of A, therefore allowing for arbitrary rational factors in the transformations of A into A. 
This one can do by defining End~(A) = End(A) ® Q, which is then isogeny invariant. 
One has now that Q is in the center of EndQ (A), but it may happen that the center be larger 

than Q. If this is the case, one can show that it is necessarily a number field F, which is 
either totally real (all its embeddings in C lie in •), or else is a totally imaginary quadratic 

extension of a totally real number field (F has no embedding in R). In the second case, F 

is called a CM field and A is said to have complex multiplication by F. 5 

If F is a CM field of degree 2n over Q, let us denote by cri, 1 < i < 2n, the distinct 
embeddings of F in C. (If F is Galois, the embeddings are related to each other by Galois 

transformations.) Among the ~i, let us choose a subset P+ = {~l . . . . .  an } such that no two 
embeddings in P+ are complex conjugates of each other. Given the pair (F, P+), called a 
CM-type, one may define the lattice 

L( F, P+) = {(crl(z ) . . . . .  crn(z) ): z E OF} C C n, (3.17) 

with OF the ring of integers of F, and then consider the complex torus Cn/L(F, P+). Its 
special structure allows to put a Riemann form on it (see [36] for the explicit construction), 

and so to promote it to an Abelian variety, which, by construction, has complex multiplica- 

tion by F. Note that P+ and P+tr lead to the same torus for any embedding ~r. Conversely, 

if A is an Abelian variety of dimension n, such that End~(A) contains F, a CM field of 
degree 2n, then A is isogenous to Cn/L(F, P+) for some P+. This shows that the complex 

multiplication is a very restrictive property, fixing much of the variety. 
Complex multiplication also yields a criterion of simplicity for an Abelian variety, known 

as the Shimura-Taniyama (ST) theorem [37]. Let us assume that A = Cn/L(F, P+) is an 

Abelian variety of CM-type (F, P+), and that F is Galois over Q (is a splitting field for 
any of its defining polynomials). Set 

W(P+) = {o" E Gal (F /Q) :  p+cr = P+}. (3.18) 

The ST theorem then states that A is simple if and only if W(P+) -- {1} [36,37]. One can 

moreover prove that if W(P+) ~ { 1 }, A is isogenous to the product of I w(e÷ ) l  isomorphic 
simple factors, each one having complex multiplication by the subfield of F fixed by W (P+) 
(see below). 

All these notions and results have a straight application to the case at hand. In the de- 
composition (3.12) of Jac(Fn), all factors have complex multiplication by Q((n0), since the 
lattice Lr,~,t is stabilized by the multiplication by arbitrary elements of Z((n0) (note that 
the cyclotomic extension Q(fno) is the imaginary quadratic extension of the totally real 
field Q((no + (-no) = Q(cos (2rr/n0)), and is thus a CM field). Observe also that Lr, s,t is 
precisely a lattice arising from a CM-type, namely (Q(fn0), Hr, s,t). Indeed Q(fno) has an 
Abelian Galois group over O, consisting of the transformations ah" ( ~-~ (h for all h E Z* 

5 Sometimes a more restrictive definition is used, which requires in addition that the degree of F be twice 
the dimension of A. 
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and from a previous remark, Hr,s,t is a coset of the Galois group by {+1}, and therefore 

contains no two h, h t such that crh = ~-h' = cr_h,. 
Following Koblitz and Rohrlich, one would like to answer two questions: 

(i) Are the factors C~°(n°)/2/Lr, s,t simple? 

(ii) Are there isogenies between some of  them? 

We have just observed that the factors C~°(n°)/2/Lr, s,t are Abelian varieties with CM-type 

(Q(ffno), Hr, s,t), so we can use the ST criterion to solve both problems. Set 

Wr, s,t = {to c ~-*o: wHr, s,t = Hr.s.t}. (3.19) 

From the above general discussion, two factors related to (r, s, t) and (r ~, s ~, t ') will be 

isogenous if and only if they have the same CM-type up to a Galois automorphism, i.e. 

Lr,s,t ~ Lr',s',t' .~ .~ (3.20) 
Hr, s,t = H(xr'),(xs'),(xt') for some x 6 2v*. 

! 
The first condition is needed to ensure that Q(ff,0) = Q(~'no), and implies no = n 0, or 

t odd, or r = 2n0 with no odd. That answers problem (ii). For the no = 2n~ with n o n o 
problem (i), one should look at Wr, s,t and see whether it is reduced to the identity or not. 

If  Wr, s,t = {1}, then Lr, s,t is simple, otherwise Lr,s, t splits up into IWr,s,tl simple factors. 

Since toHr, s,t = n ~ w - l r l , l w - l s ) , ( w - l t ) ,  the determination of Wr,s,t requires to compare the 
sets Hr, s,t. Therefore problems (i) and (ii), eventually leading to the complete decomposition 

of  the Jacobian of  Fn, boil down to the same question: when are two sets Hr, s,t and Hr',s',t' 

equal? This is precisely what the su(3) parity rule requires to know. 
This very concrete problem is easily solvable on a case-by-case basis, but remains difficult 

to work out for general n. Koblitz and Rohrlich solved it when n is coprime with 6, and 

when it is a power of  2 or 3. Recently the decomposition for general n was completed by 

Aoki, except for 33 values of n between 2 and 180.6 

We now summarize their results, leaving out the 33 special values of  n. We first define 

an equivalence relation on the admissible triplets: we will say that (r, s, t) ~ (r ' ,  s t, t ~) iff 

(r ' ,  s t, t ~) = ((hr), (hs), (ht))  up to a permutation, that is, (r ' ,  s ~, t ' )  belongs to the class 

[r, s, t], up to a permutation. 
Concerning problem (i), it has been shown that the only non-simple Lr, s,t are those with 

(r, s, t) being equivalent to one of  the following triplets [6,33]: 

n---(1, w, n 0 -  1 - t o )  wi thw 2 =  1 modn0,  to:f i4-1,  w ~  l n 0 + l  if81n0, 
no 

(3.21) 
n 

- - ( 1 ,  1 , n 0 -  2) if41n0, (3.22) 
no 

n (l, to, w 2) w i t h l + t o + t o 2 = 0 m o d n 0 ,  (3.23) 
no 

6 The actual list of excluded integers is ~" = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 18, 20, 21,22, 24, 26, 28, 30, 
36, 39, 40, 42, 48, 54, 60, 66, 72, 78, 84, 90, 120, 156, 180}. 
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n 
- - ( 1 ,  ½n0 + l, ½n0 -- 2), if8ln0. (3.24) 
no 

Corresponding to these four c a s e s ,  t r ,  s,t factorizes in, respectively, 2,2,3 and 4 isomorphic 
simple lattices. For instance, one may check that for n = 7, 

Li.2,4 ~ [7/(1(1 qt_ ~ / -~) ) ]3  (3.25) 

so that the factor C3/L1,2,4 is isogenous to the cube of the elliptic curve of modulus r = 
!(1 + d-~).  2 

As to problem (ii), obviously we have Lr, s j  = Lr',s',r if (r ~, s', t ~) 6 [r, s, t] (as noted 
after (3.9)), or if @i s ' ,  t ')  is a permutation of (r, s, t). These are trivial isogenies (in fact 

isomorphisms), and they are the only ones i fn  is coprime with 6 [6]. When 2 or 3 divides n, 

there is a non-trivial isogeny between Lr, s,t and Lr',s',r if and only if (r, s, t) and (r', s', t ') 
are equivalent to elements in one of the following three sets [33]: 

{ ( a , a , n - 2 a ) , ( a ,  ½ n - a ,  l n ) , ( l n - a ,  l n - a , 2 a ) ,  

( ½a, ½(n + a), I n - a ) ,  ( l (n - 2a), ¼(3n - 2a), 2a)}, (3.26) 

{(a, 3a, n - 4a),  (½n - a,  ½n - 2a, 3a)}, (3.27) 

{(a, 2a, n - 3a), (½n - a,  ½2n - a,  2a)}, (3.28) 

where the integer a is subjected to two conditions: first, the components of the triplets 

should be integers, and second, after (r, s, t) and (r', s', t ') have been identified with two 

triplets in one of the three groups, no and n~ should be related as in (3.20), namely 7/,,o 
and 7/*, should be isomorphic. On the other hand, a need not be coprime with n. This list, 

n o 

remarkably simple, is an easy consequence of the corresponding one for the pairs of  triplets 

satisfying Hr, s,t = Hr',s',r, as established in [33]. In the su(3) interpretation, it completely 
solves the parity criterion by giving all pairs of  affine weights whose characters can be 
coupled in a modular invariant, that is, those weights such that the matrix element Np,p,  

may be non-zero. This list could of course be used to rederive the classification of the su (3) 
modular invariant partition functions proved in [2] (except at the 33 values of n excluded 

by Aoki, which can be handled by hand). 
It is instructive to compute the decomposition of Jac(Fn) in specific cases. In order to do 

this, we first come back to the ST theorem and show how to compute the splitting of Lr, s.t. 

Assume Wr,s.t ~ {1}. We start with two trivial observations: Wr.s,t C Hr,s,t because 1 

always belongs to Hr.s. t ,  and Wr, s,t C 7/*0 is a group. Recall the definition of Lr.s.t as  

L r . s , t  = { (  . . . .  Crh(Z)  . . . .  ) h E H  ..... : Z E 7/((no)}. (3.29) 

Wr, s.t acts freely on Hr, s,t, so we can write a class decomposition as Hr, s,t = Ar.s.t • 

Wr.s,t, with IAr, s,t[ = Inr, s,tl/lWr.s.tl. Reordering the entries in Lr.s.t  according to this 
decomposition, we have 

L r , s . t  = { (  . . . .  ( . . . .  ° ' a ° ' u , ( Z )  . . . .  )tOeWr,s, t . . . .  ) a r A  ...... : Z  E 7/((no)}. (3.30) 
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Thus an element of  Lr,s.t is of  the form ( . . . .  era (~.) . . . .  )a~A ...... where L is itself a vector of  

the type ( . . . .  crw(z) . . . .  )W~Wr..<.," 
Let K be the subfield of  Q(~n0) fixed by Wr, s,t, and OK be the ring of integers of  K. Then 

Q(~n0) is an algebraic extension of K, with Galois group Gal(Q(~no)/K) = Wr,s,t. We also 
let Oi be the elements of  a K-integral basis of  77(~'n0), that is, any element z E 77(¢n o) can 

be uniquely written as z = E i  xiOi with all xi in OK. Obviously the number of Oi is equal 

to IWns,t I. 
Let A = ( . . . .  ~rw(z) . . . .  )W~Wr, s., for Z running over 77(~'n0). We define a linear complex 

map ~p on A by 

Xi(Z ) ~ (~(Z))/  = E ~w(OiZ) ~" Z Gw(Oi) ffw(Z), 
WE Wr, s,t 11d 

1 < i  < [Wr, s,tl. 

(3.31) 

Clearly all xi belong to OK, and we obtain the inclusion 

7t(A) C [OK] Iw's''l, with finite index. (3.32) 

The index is proved to be finite by noticing that 7t is invertible since det ~i, w = det ¢rto (Oi) 
is the relative discriminant of  Q(ffno) over K. Since Lr,s,t is equal t o  (aa(A))a6ar.s.t, we 
obtain that it is contained with finite index in a product of  [ Wr, s,t I isomorphic factors through 
the linear map ~p, from which the isogeny follows: 

Lr, s,t "~" {( . . . .  o'(x) . . . .  )¢YEHr, s,t/Wr.s,,: X E (QK} IWr's'tl. (3.33) 

The lattice within the curly brackets has complex multiplication by K,  has CM-type 

(K,  Hr, s,t/Wr, s,t), and is simple by the ST theorem. 
For n = 7, the previous equation implies the decomposition (3.25). Indeed one checks 

that W1,2,4 = H1,2,4 = { 1, 2, 4}, and that the subfield of  Q(ff7) fixed by cr2 and a4 is 
K = Q(~/-Z--ff) with 0 K • 77(1(1 + x/Z-if)). 

3.4. Elliptic curves 

Being one-dimensional, an elliptic curve is the simplest Abelian variety of  all. It is thus 
a natural question to see if a Fermat curve can decompose in a maximal way, as a product 
of  elliptic curves. It turns out that this question has a positive answer, but also that it is far 
from being generic. We will show that a necessary condition to have a maximal splitting 
is that n be a divisor of  24. Koblitz has solved the more difficult question to list all lattices 
Zr, s,t that have a maximal splitting in elliptic curves. Setting gcd(r, s, t) = n/no as above, 
he finds that n o  Lr, s,t is isogenous to a product of  elliptic factors unless no belongs to the 
following set {3, 4, 6, 7, 8, 12, 15, 16, 18, 20, 21, 22, 24, 30, 39, 40, 48, 60} [38]. 

The argument is in fact extremely simple. We know that the period lattice of  Fn splits into 
a product of  lattices Lr, s,t. If  Fn is to be isogenous to a product of  elliptic curves, each Lr, s,t 

must be isogenous to a product of  one-dimensional lattices. Since Lr,s,t C C ~°(n°) /2 ,  the ST 
theorem (see Section 3.3) says that this can only happen if IWr.s,tl = Inr, s,t] = l~o(no). 
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But Wr, s,t C Hr, s,t implies Wr, s, t = nr,s,t, SO that Hr,s,t is a group. Thus Fn is isogenous 

to a product of  elliptic curves iff Hr,s,t is a group for all admissible triplets (r, s, t). Note 

that because of Hr,~,t = h H ( h r ) , ( h s ) , ( h t )  for h in H~,s,t, the set Hr,s,t in general depends on 

which representative of  the class [r, s, t] we choose, except if precisely Hr, s,t is a group. 

Let n = 2mq with q odd. 

: . . ,  * Since is First take r = s = 2 m. Then n2m2mn_2m+l {1, 2 , .  l ( q  __ 1)} N 7/q. q 

odd, 2 and ½(q - 1) belong to H2m,em,n_em+J, but 2 • ½(q - 1) = q - 1 does not. Thus 

n2m,2 m,t/_2m+l is not a group unless q _< 3. 

Now take r = s ---- q. ThenHq,q,n-aq = {1 ,3 ,5  . . . . .  2 m-I - 1} C 7/~m. B u t i f 2  m > 16, 

then modulo 2 m, (2 m-2 + 1) 2 --  2 m-I + 1 ¢~ nq,q,n_2q. Thus nq,q,n_2q is not a group if 
2 rn > 16. 

Therefore a necessary condition for Hr,s,t to be a group for all (r, s, t) is that n = 2mq 
with 2 m < 8 and q < 3, or in other words, that n divides 24. This is a sufficient condition for 

n < 12 only. I f n  divides 24 and is smaller or equal to 12, Hr, s,t is at most of  order 2 since 

~0 (12) = 4. Being a subset of  71~4, Hr,s,t is automatically a group because every element of  

7/~4 has a square equal to 1 modulo 24 (24 is the largest integer to have this property). On 

the other hand, for n = 24, Hr,~,t can be of  order 4 and it is no longer guaranteed to be a 

group. An explicit  calculation shows that indeed it is not always a group (see below), so we 

conclude that the Fermat curve Fn is isogenous to a product of  elliptic curves if and only if 

n < 12 divides 24. 

It is straightforward to compute the decomposit ion of  Fn for n I 24. For n ---- 3, 4 and 

6, all Lr, s,t are already one-dimensional,  isogenous to 7/(09 = exp ~irr)  for n --  3 and 6, 

and to Z( i )  f o r n  = 4. F o r n  = 8, Hr,s,t can only be {1,3} or {1,5} if it is of  order 2. 

One finds K = Q(x/--C-2) if Hr, s,t = {1, 3} and K = Q( i )  if Hr, s,t : {1,5}. Apart  from 

(r, s, t) = (2, 2, 4), (2, 4, 2) and (4, 2, 2) which have their Hr, s,t equal to { 1 } and their Lr ,  s,t 

isogenous to 7/(i), the complete decomposit ion of  F8 follows by merely counting how many 

triplets have a Hr,s,t equal to {1, 3} or to {1, 5}. Similarly for n --- 12, a set Hr, s,t of order 

2 can only be {1,5} or {1, 7}, yielding, respectively, Lr ,  s,t ~ [7/(0]2 or  Lr , s , t  ~ [7/(09)] 2. 

Finally for n --- 24, there are 24 triplets (r, s, t) such that their Hr.s,t is not a group, for 

instance H1,3,20 ----- { 1, 5, 11, 17}. The corresponding Lr ,  s,t a re  all equal and their product is 

[ L l, 3,20124, with L 1,3,20 C C 4 simple because W1,3.eo = { 1 }. Putting everything together, 

one obtains 

F3 "~ 7/(09), F4 "" [7/(i)] 3, F6 ~" [7/(09)] 10, 

F8 ~ [77(~/-~)] 12 ~) [7/(0] 9, F12 ~ [7/(09)] 28 • [7/(i)]27, 

F24 ~ [C4/LI,3,20] 24 ~) [product of  157 elliptic curves]. 

(3.34) 

(3.35) 

(3.36) 

Let us finally observe that the weights involved in the exceptional su (3) modular  invari- 

ants at height n ----- 8, 12 and 24, correspond to lattices which have all a maximal decom- 

position in elliptic curves. Moreover, those pertaining to a given type I modular  invariant 

have complex multiplication by the same CM field, namely Q(x/--Z-2) for n = 8 and 24, 

and Q( i )  for n = 12. This is obvious for triplets that label characters coupled to each other 
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since the very fact that they can be coupled means they have the same CM-type, but it is 
not for characters appearing in different blocks. The Moore-Seiberg exceptional invariant 

at n = 12 has not this property, and involves different CM-types. 

4 .  C o m b i n a t o r i a l  g r o u p s  f o r  t r i a n g u l a t e d  s u r f a c e s  

We gather in this section some constructions that appear naturally in the context of  
Fermat curves, triangular billiards and rational conformal field theories. They lie at the 

heart of  a deep interplay between combinatorial, complex and arithmetical structures on 

closed surfaces. A nice reference about them is [39], and [8] contains elementary reviews. 

It is a good exercise to read this section and the next in parallel, with the explicit case of  

the cubic Fermat curve in mind. 

4.1. Cartography 

Our starting point is a compact Riemann surface E together with a holomorphic map 
h from E to the Riemann sphere ramified over three points only, say 0, 1 and co. 7 The 

Riemann sphere has a "standard" triangulation consisting of 0, 1 and c~ as vertices, the real 
segments [co, 0], [0, 1] and [1, oo] as edges, and the upper- and lower-half planes as faces. 

This triangulation has the obvious but remarkable property that: 

- the vertices can be assigned labels 0, 1 and c~ in such a way that edges do not link vertices 

with the same label (we say that vertices are three-colorable); 
- the faces can be assigned labels black (corresponding to the lower-half plane) and white 

(corresponding to the upper-half plane) in such a way that faces of  the same color have 
no common edge (faces are two-colorable). 

Taking the inverse image of this triangulation by h, E can be equipped with a triangulation 

which inherits the same coloring properties. 
The combinatorial data of  the triangulation are conveniently encoded in the so-called 

cartographic group. Its definition uses the orientation of the triangulation (of course the 

orientation of  ~7 as a Riemann surface induces an orientation on the triangulation). The 
cartographic group permutes the flags of  the triangulation. A flag is an ordered triple (v, e, f )  

where v is a vertex, e an edge containing v and f a face containing e in such a way 
that with respect to the orientation of  the boundary of f ,  e starts from v. The number 
of  flags is twice the number of  edges (or thrice the number of  faces for a triangulation). 
By orientability, there is a cyclic ordering of  the flags (v . . . .  ) (resp. (., e, .), ( . . . .  f ) )  that 
contain a fixed vertex o (resp. an edge e, a face f ) .  Hence every flag (v, e, f )  has a unique 
vertex successor (v, e, f)cr (of the form (v, e',  f ' ) ) ,  a unique edge successor (v, e, f ) u  (of 
the form (v',  e, f ' ) )  and a unique face successor (v, e, f)~0 (of the form (v', e', f ) ) .  The 

A 

flag permutations a ,  ot and ~0 generate the cartographic group C, which encodes all the 

7 The compact surfaces E for which such an h exists have the following characterization: they are defined 
over number fields (Belyi's theorem). 
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f e 

f 

Fig. 1. The action of the generators of the cartographic group on the flags is defined in the text. One finds 
that (v, e, f)~0 = (v', e', f ) ,  (v', e', f ) a  = (v', e, f ' )  and (v', e, f ' )~  = (v, e, f ) ,  confirming the relation 
~r~o = 1. The arrow indicates the orientation. 

combinatorial data of the triangulation. In fact, the cycle decompositions of or, ot and ~p 

are in one-to-one correspondence with the vertices, edges and faces of  the triangulation. 
For instance, the cartographic group of the standard triangulation of the Riemann sphere is 

isomorphic to $3 (the permutation group on three letters). 
This definition of the cartographic group works for any polygonal decomposition of an 

oriented surface without boundary. In general one has O~ 2 = 1 (an edge is common to only 
two faces), but particular to a triangulation is the relation ~0 3 = 1. The order of cr is equal 

to lcmv(nv), where nv is the number of triangles that meet at the vertex v. Perhaps less 

obvious is the relation aa~o = 1, valid for general polygonal decompositions. It can be 
easily verified with the help of  Fig. 1. 

The cartographic group of a triangulation is always a quotient group of the modular 

group via the homomorphism S --+ or, T ~ cr. Indeed as noted above, one has S 2 = 1 and 
(ST)3 = (~r )3  = ~p-3 = 1. This implies that there is a universal cartographic group, which 

is the modular group, and a universal triangulation, of  which the flags can be parametrized 

by the elements of  the modular group. The corresponding triangulation is familiar. The 
quotient of  the upper-half plane © by F2, the principal congruence subgroup of level 2 in 

PSL2(~-) is known to be a sphere with three punctures. So there is a unique holomorphic 
map from ,~ to CPl  - {0, 1, ~ }  invariant under F2. For r 6 ~,  we set q = e 2irrr and define 

ql/2404(0 . g ) ]4  
U ( r ) =  L q - ~  ---- I - I ( 1 - q m - ½ )  8, 

m=l 

_ ~ql/2403(0, T ) ]  4 
V(r )  = L ~ - ~  = - H (1 + qm-½)8  

m=l 

q 1/2402(0, r )  14 cx~ 
W(r )  = k ~ - ~  ----- 16~/q 1-I (1 + qm)8. 

m=l 

(4.1) 

(4.2) 

(4.3) 
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It is a standard identity that U(r)  + V(r) + W(r) = 0. Then the inverse image of the 
standard triangulation of the sphere by the map ~. (r)  = - U  ( r ) / W  (r) (invariant under/'2) 
gives the appropriate triangulation of ~. More precisely, one can check that 

( _ ~ )  1 L ( r + l ) =  1 -  ~ . ( r ) ,  ( 4 . 4 )  
~" - M r ) '  

from which the invariance under /-'2 follows, and that 256(1 - )~ + ),2)3/(L(1 - ~.))2 (a 
rational function of degree 6 in Z) is the standard modular invariant function j .  Moreover it 
is easy to see that ~. maps 0 to 0, 1 to 1 and c~ to ~ .  Thus ~. defines a homeomorphism of 
~9/F2 with the Riemann sphere. From the above product formulas, one checks that ~.(r) is 
real negative on the imaginary axis, ranges between 0 and 1 on the big semi-circles going 
from +1 to 0 (they are to be identified in ~/F2), and takes all positive values from 1 to 
on the line Re r = 1. Thus the standard triangulation of the ),-sphere consists of the two 

faces (see Fig. 2) 

B = { r  6 ( 9 : - l _ < R e r  < 0 ,  I r+112_> 1)}, 

W = {r 6 ~ :0  _< R e r  < 1, Ir - 112 :> 1 ) } .  

(4.5) 

(4.6) 

The action of F2 on this triangulation yields the universal triangulation of (9 U Q tO {c~} 
shown in Fig. 2. For later use, we record the following remarkable product formula: 

d~. irr i~i (1 - qm)4 
dr  -- 16---~,~ (1 + qra)16" 

m = l  

(4.7) 

In this interpretation, the cartographic group of the standard triangulation of the Riemann 
sphere, isomorphic to $3, is represented as PSL2(~-)/I-'2. Let C be the kernel of the homo- 
morphism from P SL2 (77) to C. Because of the intertwining property of h, an element of the 
modular group whose image is trivial in C must be trivial in $3 = PSL2(~-)/F2. This means 
that C is a subgroup of/ '2.  Let us also define D = F2/C. It is well known that F2 is the 
subgroup of PSL2(Z) generated by Rc¢=  T 2, Ro = ST2S -1 and RI = (TS)T2(TS) -1. 
They satisfy a single relation, namely RoRI Rot = 1. This implies that D is generated by 
] Z ~  = 0 "2, /Z 0 = 0tO'20" - 1  and/Zl = (0.0')0.2(0.0') -1. The order of C = PSL2(7/)/C is six 

times that of D. 
The connectedness of ,~ implies that C acts transitively on flags. Hence, the set of flags is 

a homogeneous space for C. The isotropy subgroup of a flag, well defined up to conjugacy 
in C, has the following properties: 
- it does not contain any invariant subgroup of C (such an invariant subgroup would act 

trivially on all flags); 
- its image in $3 is trivial (because the cartographic group acts compatibly with the map h). 

In summary, each pair (•, h) gives rise to a subgroup B of F2, and an invariant subgroup 
G of PSL2(71) (the intersection of all the conjugates of B in PSL2(7/) so G is a subgroup 
of B) such that: (i) the flags are parametrized by B\PSL2(~_) (the set of left cosets Bg for 
g E PSLz(TY)), and, (ii) the cartographic group is isomorphic to PSL2(71)/G acting on 
B\PSL2(~_) on the right. 
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_9 -1 0 1 2 

Fig. 2. Universal triangulation of ~ U Q U {co} obtained by translating the standard triangulation of the 
~.-sphere (consisting of the two faces marked B(lack) and W(hite)) by the principal congruence group F2. Any 
flag is obtained from a fixed one F* by the action of a unique element of the modular group. The cartographic 
group acts by the standard multiplication: if c, c' are elements of the cartographic group, (F ¢)c' = gc' gc (F*) 
for some gc, gc' ~ PSL2(77) . For instance the successors of the flag F containing the vertex 0 and the face 
W are F ~ = ST - 1 S ( F ) ,  F ~ = S(F)  and F~ = T S ( F )  (orientation chosen clockwise). 

But there is in fact a reciprocal• If B is any subgroup of  F2, let Z ~ be the quotient g ) / B .  It is 

a Riemann surface with punctures, and the projection from ©/B to ©/F2 ~ CP  1 - 10, 1, ec} 

is holomorphic and unramified. This map has a holomorphic extension, say h',  from the 

compactified surface ~ t  (the surface obtained from I2 t by "filling" the punctures, see for 

example [40]) to CPI ,  ramified only above 0, 1 and oc. Now if B comes from a compact ~-, 
Riemann surface Z' via a map h by the above construction, then I;' is isomorphic to . 

Indeed Z' and -~r can be cut into triangles with the same combinatorial arrangement. Let us 

consider pairs of  triangles f and f '  on i? and ~ t ,  that are mapped by h and h t onto the same 

triangle of  the standard triangulation of  CPl .  Restricted to the interior of  the triangles, these 

maps are holomorphic, so their composition defines maps from each triangle of  2' to the 
• . - - !  

corresponding triangle of  i ? ,  which are holomorphic on the interior of  the triangles. Along 

the edges, they glue so as to yield a continuous one-to-one map from Z' to To check 

holomorphicity along the edges, consider a pair of  faces f l  and f2 with a common edge e 

on 17 and the corresponding pair f~ and f~ with common edge e' on ~ ' .  The maps h and 

h ~ send the domains made up of  the interiors of  the faces together with the interiors of  the 

common edges holomorphically and one-to-one to the same open subset of the Riemann 

sphere• This ensures that the composite map is holomorphic, and in particular holomorphic 
along the interior of the common edge. So the continuous map we have constructed from Z 

to -~! is holomorphic except maybe at the marked points. But then its continuous extension 

has to be holomorphic everywhere (a holomorphic map in a pointed disk, bounded near the 

puncture has a unique holomorphic extension). 
So the cartography of  a Riemann surface (defined over Q) eventually leads to its uni- 

formization by ~ . / B  for some Fuchsian group B, in fact a subgroup of P S L 2 ( 2 ~ ) .  This will 
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be extensively used in the next sections to uniformize the Fermat curves, and other related 

curves. 

The symmetry group of  a triangulation has a natural definition. It consists of the relabel- 

ings of  the flags that do not change the combinatorial data, i.e. that commute with the action 

of  the cartographic group. As the cartographic group acts transitively on flags, an element 

of  the symmetry group that fixes one flag has to be the identity. For the same reason, the 
orbits of  the symmetry group all have the same number of  elements. So the order of  the 

symmetry group divides the number of  flags. If  this order is the number of  flags, we can 

choose a flag and then get any other flag by acting with a unique symmetry. So in that case, 

the flags can be parametrized by symmetries. But the cartographic group commutes with 

symmetries, so an element of  the cartographic group can fix a flag only if it is the identity. In 

other words, there is no non-trivial isotropy, and the flags are also parametrized by elements 

of  the cartographic group (B = G = C). 

It is almost obvious (and can be checked along lines similar to the proof above that 

Z' and ~P are the same Riemann surface) that the action of  the symmetry group induces 

holomorphic automorphisms of  the associated Riemann surface. 

As mentioned above, the cartographic group can be used to encode the combinatorics of  

a polygonal decomposition of  a closed oriented surface. For the triangulation of  a Riemann 

surface given by the inverse image of  the standard triangulation of the sphere by a map 

ramified only over 0, 1 and ~ ,  there is another convenient combinatorial description. Let 

us fix such a Riemann surface and such a map. This time, we use a group, which we call the 

triangular group, that permutes the faces of  the triangulation. It is simpler to define than the 

cartographic group. It has three generators of  order 2: cr0, o1 and a ~ .  If f is a face of the 

triangulation, the edge of  f opposite to the vertex 0 (i.e. joining the vertices 1 and ~x~) is 

common to exactly one other face f ' ,  and we set ~ro(f) = f ' .  The other two generators are 

defined analogously. The triangular group specifies which triangle is glued to which other 

triangle and along which edge, so it gives all that is needed to reconstruct the surface. It 

contains an invariant subgroup of index 2 with generators 

P0 = ¢r~Crl, Pl = ~r0croo, Poo = crib0. (4.8) 

Geometrically, Pv is a rotation around the vertex v, mapping a triangle touching v to the 

next one of  the same color. The order of Pv is half the number of  triangles meeting at v. 

They clearly satisfy P~oPlPO = l, so this subgroup, called the oriented triangular group for 
obvious reasons, is a quotient group of/-'2. Hence there is a unique epimorphism f rom/ '2  

to the oriented triangular group sending Ro I to P0, R11 to Pl and R ~  l to Pc¢. The oriented 
triangular group is important for two reasons. First it contains the same combinatorial 

information as the full triangular group. Indeed, since it maps white faces into white faces 

and black faces into black faces, it says how the vertices of  faces of  a given color are linked 
to each other, and thus specifies all the edge identifications needed to completely reconstruct 
the surface. Second, it is easier to compute than the cartographic group, and yet allows to 
describe the latter more easily than what was done before. The idea is simple, but requires 
first to find an appropriate parametrization of  the flags. With the flag (v, e, f ) ,  we associate 
a permutation ( j k l )  of the symbol (01c~): the first element is the label of  v, the second is 
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the label of  the other vertex of e and the third is the last label remaining. Then with the same 

flag (v, e, f ) ,  we associate the white triangle t that has e in common with f ,  and we write 

(v, e, f )  -~ [(jkl) ,  t]. Let e( jk l )  be 0 if ( jk l )  is an even permutation and 1 if it is an odd 
permutation of (01 oo). It is then easy to check that 

cr[(jkl), t] = [(j lk),  p;(Jlzt) (t)], (4.9) 

oA(jkl) ,  t] = [(kjl),  t], (4.10) 

~o[(jkl), t] = [(klj), p~e(ktj) (t)]. (4.11) 

From these, one computes the action of  the D group to be 

#o[( jk l ) ,  t] = [(jkl) ,  pkt], (4.12) 

lzl [(jkl) ,  t] = [(jkl) ,  p;(jlk) ptpfe(Jl~) t], (4.13) 

# ~ [ ( j k l ) ,  t] = [(jkl) ,  pjt]. (4.14) 

The equation for/zl is a little bit surprising, but is needed to ensure the relation # ~ / z 0 #  1 = 

1. This shows that although the group D is closely related to the oriented triangular group, 

they do not coincide, the former being in general bigger. The three generators #0, /x  I and 

/zoo all have the same order n, the least common multiple of the orders of  p0, pl and p~ .  

Because it is of  particular importance for what follows, we will explore, for the rest of 

this section, the case where the oriented triangular group associated with (Z', h) is Abelian. 

The above relations simplify to read 

Izot ( j  kl), t] = [ ( j  kl), pkt ], 

#1 [(jkl) ,  t] = [(jkl) ,  ptt], 

I z~[( jk l ) ,  t] = [(jkl) ,  Ojt]. 

(4.15) 

(4.16) 

(4.17) 

Thus the group D is also Abelian, and is isomorphic to a subgroup of  77n x /7 n (or more 

invariantly of the quotient of  7/n x 7/n x 7/n by the diagonal Zn), 

If D - Dn = 7/n x ~Tn, one can even give a presentation of  the cartographic group, which 

we denote by Cn, by generators and relations, i.e. one can determine the kernel Cn of the 

homomorphism from PSL2(?7) to Cn. As the relation/z0#lbtoo = 1 is automatic in terms 

of  the generators ct and tr, the commutation of/z0, # 1 and/zoc amounts to/zoo# l tz0 = l, or 
O'2(O'Ot)O'2(O'u)-loto'20t -1 = 1. Using t~ -1 = c~ and O t o ' - l o t  = O'O'O',  this can be simplified 

t o  ( o 3 0 t )  3 = 1. Moreover, there is the obvious relation o 2 n  = 1. The quotient of  the modular 

group by these two relations is Cn because they ensure the commutativity and the correct 

order for/z0, #1 and/zoo: 

O"~ =- 7/n × 7/n, CAn =-- (S, T [ S 2, (ST) 3, T 2n, (T3S)3), ICn] = 6n 2. (4.18) 

Although not obvious at this stage, Cn is isomorphic to the semi-direct product $3 • (2~n × 

7/n), and possesses an action on CP2 by 

A(x; y; z) = ((x;  y; z), B(x; y; z) = (x; (y ;  z) (( = e2irr/n), (4.19) 

rl (x; y; z) = (y; x; z), r2(x; y; z) = (x; z; y). (4.20) 
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We will prove this isomorphism in Section 4.2, when we consider the automorphisms of 
the Fermat curves. 

To summarize, there is a natural universal object for pairs (2:, h) with Abelian oriented 
triangular groups. Let 2~n be the quotient ~)/C,  with punctures filled in. It is a compact 

Riemann surface, and its group of holomorphic automorphisms permuting the flags is iso- 
morphic to C',. The flags of (2~, h) can be parametrized as the quotient of Cn by the stabilizer 

subgroup of a given flag, in fact a subgroup of Dn. This subgroup acts as automorphisms on 
Sn and the quotient is nothing but E.  In other words, 2~n is a covering of E of degree equal 

to the common order of the stabilizer subgroups. This gives a convenient way to relate the 
geometry of E to that of ~,,. We will use it in the following sections. 

4.2. Modular forms associated to Fermat curves 

We have seen in Section 3 that certain important features of the RCFT with an affine 

symmetry based on su(3) were governed by quantities that had a very important role in 
the description of the geometry of the Fermat curves. Also some similarities emerged: for 
instance the weights in the alc6ve of su(3) at height n are in one-to-one correspondence 

with the holomorphic differentials on Fn. In this section, we would like to see whether this 

relationship goes beyond the superficial level by making the holomorphic differentials on 

the Fermat curves look as much as possible like the characters of a conformal field theory. 
Our construction is not canonical in a mathematical sense, but it is nevertheless quite natural. 

We use the vocabulary associated with the combinatorics of triangulations, as presented in 
the previous section. 

Let Fn be the Fermat curve of degree n, 

u n + v  n + w  n = 0  inCP2. (4.21) 

We shall sometimes use the affine model x n + yn = 1 by setting x = ~ u / w  and y = ~ v / w  

where ~ = e iJr/n. The map t = - u / w  gives an isomorphism of F1 and CPI.  The three base 

points u = 0, v = 0 and w = 0 of Fl are mapped to 0, 1 and oo. The inverse image of the 
real axis gives a triangulation of F1 with 2 faces, 3 edges, and the base points as vertices. 
There is a canonical map of degree n 2 from Fn to F! given by 

hn : (u; v; w) ~ (un; on; w n) (4.22) 

and ramified only over the base points. Taking the inverse image of the standard triangulation 
of Fl, F,, is naturally endowed with a triangulation consisting of 2n 2 faces, 3n 2 edges and 
3n vertices (leading quickly to the genus formula). The 3n vertices are 

n vertices of type 0: (0; v0; w0) with v~ + w~ = 0, (4.23) 

n vertices of type 1: (u l; 0; Wl) with u~ + w~ = 0, (4,24) 

n vertices of type oo: (uoo; voo; 0) with uoon + vo on = 0. (4.25) 

For n > 3, the vertices are nothing but the inflexion points of Fn (which are degenerate, 
the tangent line at a vertex having a contact of order n with the curve). Let us parametrize 
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these points more explicitly by setting ~o = vo/wo,  ~l = w l / u l  and ~ = u ~ / v ~ .  These 
numbers are odd powers of  ~. 

Edges have to join vertices of  different type, so there cannot be more than 3n. 2n/2  edges. 
This is the actual number of  edges, so that there is an edge between any two vertices of  

different type. It remains to describe the faces. There is a unique one-to-one holomorphic 
map (u(t); v(t); w(t ) )  from the upper-half plane to a (white) triangle on F,, such that 
- u  ~ ( t ) / w  ~ (t) = t. If  the images of t = 0 and t = 1 are given vertices of type 0 and 1, 

say (0; v0; wo) and (u 1; 0; wl)  respectively, then a straightforward computation shows that 
the vertex of type cxz in this triangle is (u~ ;  v~ ;  0) such that se0sel~ = ~. An analogous 

computation for black triangles shows that (0; vo; w0), (u 1; 0; wl ) and (u~ ;  v~ ;  0) are the 
vertices of  a black triangle if and only if ~ 0 ~ 1 ~  = ~ - l .  Note in particular that any three 

vertices define the interior of  at most one triangle, unlike the standard triangulation of the 

sphere. 
We are now in a position to give the explicit action of the triangular group. The reflection 

a0 acts only on ~0. If the triangle is white (resp. black) cr0 multiplies ~0 by ~-2 (resp. ~2 ). 

The other two generators act analogously (just change the labels). From this we deduce the 
action of the oriented triangular group. If t (~0, ~1, ~ )  is the white face with vertices given 

by ~0, ~J, seoo (hence ~ 1 ~ 0  = ~), we have 

pot(~o, ~1, ~ )  = t(~0, ~-2~1, ~2~c~), 

plt(~0, ~1, se~) = t (~2se0, sel, ~-2~e~), 

p~ t (~o ,  ~1, ~ )  = t(~-2~0, ~2~1., ~oo). 

(4.26) 

(4.27) 

(4.28) 

In this form, it is obvious that the oriented triangular group is commutative, and that 

POPl Poo = P~ = P~ = p n  = I are the only relations the generators satisfy. Accord- 
ing to the results of  the previous section, it follows that D(Fn)  = Dn = 7/n × ~-n (equal to 
the oriented triangular group in this case), and that the cartographic group is C~, the group 
of order 6n 2 with presentation (or, a I or2, (u~r) 3, ~r2", (°'3~)3) - But  the number of  flags 

on Fn is 6n 2, precisely the order of  Cn' so that F~ is isomorphic, as a Riemann surface, to 
the quotient s)/Cn with punctures filled in. Also the symmetry group of the triangulation is 

isomorphic to Cn" 
Let us observe that hm o hn = hmn and that hn not only maps F,, to Fl,  but also Fmn to 

Fm for any m. By construction, as a map from Finn to Fro, hn maps vertices into vertices, 
edges into edges, faces into faces and flags into flags, and preserves the coloring properties. 

Moreover h n intertwines the action of Cmn and Cm, so that Cm is a quotient group of C,~n 
for any n. As a byproduct, the family Cn indexed by positive integers is a directed projective 
family of groups, while the C,, is a directed injective family of  groups. 

The holomorphic automorphisms of F~ permuting the flags form a group isomorphic 
to 6"n. It is straightforward to get the corresponding action. In fact, F~ has a number of 
obvious automorphisms: permutations of  the coordinates, multiplication of the coordinates 
by arbitrary nth roots of unity and combinations thereof. It is clear that this group has order 
6n 2, and that it must coincide with C,,, the cartographic group we have just computed. This 
proves the isomorphism announced in the previous section, C'n = $3 : (7/n × 7Yn), which 
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otherwise can be proved abstractly. For n > 3, this turns out to be the full automorphism 

group [41] (see also Appendix A). We can view the automorphism group as a quotient 

of  PSL2(71) acting on s) if we uniformize F~ by the following nth roots of  the functions 

uniformizing ©/1"2 ~- C P I :  

oo 
u(r )  = H ( 1  -- qm-l/2)8/n, 

m--I 
o~ 

v(r)  = ~ I - I  (1 -F qm-l/2)8/n, 
rn=l  

oo 
tO(r) = (16x/~) 1/n 1-'I (1 q- qm)8/n. 

m=l 

(4.29) 

(4.30) 

(4.31) 

For definiteness, the above roots are always chosen to be real positive if the argument is 

real positive. Then the modular transformations 

S: ( u ( - 1 / r ) ;  v ( - 1 / r ) ;  w ( - 1 / r ) )  = (w(r) ;  v(r) ;  u(r) ) ,  (4.32) 

T: (u(r  + 1); v( r  + 1); w(r  + 1)) = (~-2v( r ) ;  u(r) ;  w(r) ) ,  (4.33) 

generate a group isomorphic to Cn. The generators of  F2 act as 

R0 : (u; v; w) > (~2u; v; w), (4.34) 

R1 : (u; v; w) ) (u; ~2v; w), (4.35) 

R ~  : (u; v; w) ) (u; v; ~2w). (4.36) 

After these preliminaries, we are ready to associate modular forms (for the invariant 

subgroup Cn of  PSL2(Z)) to the holomorphic differentials on the Fermat curves. It is a 

well known fact in algebraic geometry that if the zero set of  P(u, v, w), a homogeneous 

polynomial of  degree n > 3, is a smooth curve in CP2, the holomorphic differentials on 
that curve take the form 

W 2 U ) 

Q(u ,v ,W)op /Ov  d ( - w  ' (4.37) 

where Q(u, v, w) is a homogeneous polynomial of  degree n - 3. More precisely, this is 

the expression of  a holomorphic differential on the coordinate patch w ~ O, OP/Ov ~ O, 
where - u / w  is a good local parameter. Because [w2/(OP/Ov)] d ( - u / w )  is multiplied, 

under permutation of  the variables, by the signature of  the permutation, the above expression 

gives the most general everywhere holomorphic differential. For F~, we thus get a standard 

basis of  hoiomorphic differentials {Wr, s,t: 1 _< r, s, t < n - 1, r + s + t = n}, where, in 
the domain v ¢ 0, w ¢ 0, 

Wr, s,t = ur_lvs_ntot+ld (_  u )  . (4.38) 

The differential O)r,s,t has zeros of  order r - 1 at the n vertices of  type 0, of  order s - 1 at the 
n vertices of  type 1, and of  order t - 1 at the n vertices of  type oo, for a total o fn  (n - 3) zeros 
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as expected. Taking r as a local parameter, they yield a basis for the modular forms of  degree 

2 for C,,. Using relation (4.7) and the standard identity 1-Im>l (1 ÷ qm)(1 - q2m-l)  = l, 

and neglecting a constant factor equal to ( - iTr) /n~ s 16 t/n, one eventually arrives at the 

following expression (we keep the same name for the differential and for the modular 

form): 

qt/2n ~ ( ]  - qm/2)  4 I )8(2s+t)/,, °gr'~'t = ~qm/2  (1 +qm)8~s+2t)/n(l + q m - ~  (dr).  
m = t  

(4.39) 

It would not be difficult to write explicitly the action of  the modular group on this basis 

of  holomorphic forms (see below), and this would allow to compare the corresponding 

periods along a fixed cycle, as was shown using different methods in Section 3. We shall 

rather examine the similarities and differences between these modular forms for Cn and the 

characters of the su(3) affine algebra at level k = n - 3. 

As mentioned earlier, the number of (unrestricted) characters is the same as the number 

of  w's. The restricted characters however are not linearly independent. Moreover, characters 

are functions and the differentials on Fn are forms. This is not too serious. One possible 

remedy is as follows : on F3 there is only one holomorphic differential, and the corresponding 

modular form is easily seen to be r/4(r), whereas the character at height 3 is the constant 

function 1. However the denominator of  the Weyl-Kac character formula is r/8 (r), so that 

the numerator is naturally a modular form of weight 4, i.e. a quadratic differential. This 

makes plausible the fact that to find analogies, it is perhaps better to concentrate on the 

numerators of  characters. We shall elaborate a little bit on that at the end of this section. 

Observe that cOr,s,t does not change if one multiplies r, s, t and n by a common factor 

(this is clearly related to the map hm from Finn to Fn), but this property is not shared by 

the characters (though the alcrve B,, is properly embedded in B,nn). However we have seen 

in Section 2 that the numerators of characters satisfy more involved identities of  the same 

kind having a similar origin. 
One might be tempted to see another common point in the fact that both sets carry a 

representation of  the modular group for which only a finite quotient acts, and which is in 

general highly reducible. For the characters, this is a well known fact. For the holomorphic 

differentials on Fn, it is related to the regularity of  the triangulation induced by the map h,,. 

However the two representations are very different. From the above formulas, one obtains 

the modular transformations of (4.39) 

~Or, s,t(r + 1) = ~t COs,r.t(r), w,. ,s, t(-1/r) = - r 2 1 6  ~r-t)/n ogt,s,r(r). (4.40) 

Thus for the holomorphic differentials on F,,, the modular group merely permutes r, s and 

t and multiplies by phases. This is in striking contrast with the modular transformations of  

the characters. 
One can nevertheless try to push the analogy with the affine su (3) characters by looking 

at the modular problem for the differentials on F,,. So we set X~.s,t = w~.~.t/wl, ~, I. The 
carry a (non-unitary) representation of PSL2(/7), and we can look for the modular invariant 
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sesquilinear forms in the )~. It turns out to be much easier than the corresponding affine 

modular problem. 

Let N be the matrix specifying a Fermat modular invariant. That it commute with T and 

S implies, respectively, 

s-t-t  t ~T 
Nr, s,t;rt,s,,t t ~- ~ l ¥ s , r , l ; s t , r t , t t  ~ 

Nr, s,t;r, s,,t, = 16 ( r+r ' - t - t ' ) / n  Nt,s,r;t, ,s,  r," 

(4.41) 

(4.42) 

Requiring that the entries of  N be positive integers, Eq. (4.41) yields g r ,  s , t ; r , s , , t ,  = 0 if 

t ~ t t. I f N r ,  s,t;r,,s,,t, ~ O, then (4.42) implies r = / hence s = s' ,  so that only the diagonal 

couplings Nr, s,t =--- Nr,  s,t;r,s,t  may be non-zero. They must satisfy 

gr ,  s,t = gs , r , t ,  and Nr, s,t = 28(r - t ) /n  g t , s , r .  (4.43) 

These conditions mean one can look at the six permutations of  (r, s, t) independently of  the 

other triplets, and also that, up to a normalization factor, the modular invariants involving 

the six permutations is unique. The integrality conditions imply 8r = 8s = 8t mod n, and 

one finds, assuming r < s < t, that the unique modular invariants reads 

Zr, s , t ( f n )  = [~r,s,tl 2 -q- [Xs,r, t l  2 --~ 2 8 ( t - r ) ~  n I~t,s,rl 2 q- 28(t-r)/n J)~s,t,r J 2 

"~ 28( t - s ) /n  IXt,r,s ]2 _~ 28( t - s ) /n  IXr, t,s j2. (4.44) 

Using r + s + t = n, the integrality conditions imply 24r = 24s = 24t = 0 mod n. If  

r, s, t have a common factor, say d, then Ogr, s,t descends to the differential O)r/d,s/d,t/d on 
Fn/a, whereas if gcd(r, s, t) = 1, then n must divide 24. 

Thus the analogy between the two modular problems is somewhat disappointing, but there 

is still a curious fact. The coefficients of  the q-expansion of  the characters are integers. This 

is in general not true for the holomorphic differentials on Fn, and in fact happens quite 

seldom. From our explicit formula, the q-expansion of  ~Or, s,t has integer coefficients (or 

even bounded denominators, which is a normalization invariant statement) if and only if 

8(s + 2t) and 8(2s + t) are both multiples of  n. It is then not difficult to make a catalog 

of  all triplets satisfying these conditions. If  we assume, without loss of  generality, that 
gcd(r, s, t) = 1, one finds the straightforward but puzzling result: 
- n is necessarily a divisor of  24; 

- the q-expansion of Xr, s,t contains only integer coefficients if and only if )~r,s,t appears in 
a modular invariant for Fn ; 

- the fourexceptionalsu(3) modular invariant partition functions appearing atheight equal 
to 8, 12 or 24, involve characters labeled by triplets (r, s, t) which all satisfy the above 

conditions, so that the corresponding forms COr, s,t have integer coefficients in their q- 
expansion. They, however, do not exhaust the list of  triplets with this property. 
To prove the first two points, one simply notes that 8(s + 2t) = 8(2s + t) = 0 mod n 

implies 24r = 24s = 24t = 0 mod n. 
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4.3. Rational triangular billiards 

165 

A (generalized) billiard is a planar domain with piecewise smooth boundary. A classical 

particle moving in such a domain is simply reflected when it hits the boundary, but moves 

freely otherwise. The spectrum of the corresponding quantum mechanical system is related 

to the Dirichlet problem for the Laplace operator. The general case can be very complicated. 

When the domain is a Euclidian triangle with rational angles (in units of Jr), the classical 

phase space has an interesting geometric structure: it has a foliation by closed topological 

surfaces. In fact the leaves have a natural complex structure [42]. We will briefly review 

this construction. On the way we will see that many quantities we encountered in Section 

3 reappear quite naturally. We will then present yet another intriguing relation with the 

exceptional modular invariants for the su (3) W Z N W  models. 

Naively, a point in the classical phase space is a pair (x,p) where x is a position (a 

point of  the triangle) and p a momentum (an arbitrary two-dimensional vector). However, 

to take into account reflections when the particle hits the boundary, the real phase space is 

a quotient. The points (x, p)  and (x', p r) are identified if x = x t and i fp is obtained from p ' 

by a reflection in the edge containing x. Then the phase space is a union of  triangles, labeled 

by momenta, with some edges identified. More precisely, let us assume that the angles of  

the triangle are rrr/n, 7rs/n and zrt/n, with r, s, t, n four strictly positive integers satisfying 

r + s + t = n, and gcd(r, s, t) = 1. Clearly the norm of the momentum is irrelevant so we 

can focus on its phase, writing p = pe io. If the triangle lies with its base horizontal, the 

reflections through the boundaries change q~ according to 

27rs 
~r 0 : q~ ~ -q~ -- - - ,  (4.45) 

n 

2rrr 
rrl : 4~ ~ -~b + - - ,  (4.46) 

n 

~r~ : 4~ ) -q~. (4.47) 

Here try denotes the reflection through the boundary opposite to the vertex v, and 0, 1 and cx~ 

correspond, respectively, to the comers r, s, t. The horizontal base is the edge linking 0 (left 

comer) to 1 (right comer). Obviously, the momentum of the particle on its trajectory can 
take 2n values (we exclude the momenta leading to singular trajectories in which the particle 

hits the comers). Thus in phase space, the particle moves on a submanifold consisting of 

2n copies of  the triangle (the billiard), labeled by the values of  4~ (and a value of  p), and 

this gives a foliation of  the phase space. Each such submanifold is a compact combinatorial 

connected surface without boundary. It is a surface without boundary because every edge is 

common to exactly two triangles, due to the above identification, and it is connected because 
one can reach every triangle from any other by a series of  reflections. The surface would 
not be compact if some angles were irrational, in which case the leaves of  the foliation may 

well be dense in phase space. From now on we restrict to the rational case. 
The combinatorial description of  the surface made up of  the 2n triangles is obviously the 

same for all initial values of  the momentum. The reflection group, generated by ~r0, or1 and 
rr~, permutes the triangles that build the surface. This action is nothing but the action of 
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the triangular group as defined in Section 4.1. Our first purpose is to compute the triangular 

and cartographic groups, and to find an algebraic model for the surface. Set r '  (resp. s ' ,  t ') 

for the common factor between r (resp. s, t) and n, and write n = r ' r "  = s~s" = t~t ". 

Let Tr, s,t (or simply T when no confusion is possible) denote the associated combinatorial 

surface, which is a generic leaf of  the foliation of  phase space. 

From the action of  cry, the generators po, Pl, and p ~  are represented on ~b by a clockwise 

rotation of  angle 2zr r /n ,  2 r r s / n  and 2 z r t / n ,  respectively. They commute and satisfy p~" = 
$ # itt 

Pl = Poo = 1. They satisfy other relations as well, as it is clear that the oriented triangular 
group is isomorphic to gn, because, since r, s and t are relatively prime, we can find integers 

a b e "  a, b and c such that a r  + b s  + c t  = 1, so POPl Pc~ Is a rotation of  angle 2zr /n .  One can also 
check that the triangular group is the dihedral group of  order 2n, and that the D group is 

D('-~r s t) = [ 7/n/3 × ~-n if n = r - s = 0 mod 3, (4.48) 
' ' [ 7In >( ~ n  otherwise. 

It is amusing to note that the structure of  D is very reminiscent of  the complementary series 

of  su (3) modular invariants (also called the D series). Following Section 4.1, one can use 

these results to uniformize Tr, s,t. Let us first compute its genus. The triangulation consists 

of  2n triangles, 3n edges, r ~ vertices of  type 0, s ~'vertices of  type 1, and t r vertices of  type 

o0. Indeed for vertices of  type 0 for instance, there are 2r t~, twice the order of  Po, triangles 

that meet at each vertex of  type 0 (r" white and r"  black triangles), so that 2n such vertices 

get identified by groups of  2r", leaving 2 n / 2 r "  = r ~ distinct ones. One obtains the Euler 

characteristic [7]: 

2 -  2g = r~ + s  ~ + t  r - n .  (4.49) 

We already know one way to put a complex structure on T via the construction of  Sec- 

tion 4.1. Let us indicate another equivalent way. We represent each Euclidean triangle of  

T in the complex z-plane and put the corresponding complex coordinate in the interior 
of  the triangles back on T.  Different choices differ by affinities (z ~ az  + b), so that 

the complex coordinates glue holomorphically along the interior of  the edge common to 

two triangles. It remains to deal with the vertices. Let us choose a vertex v, of  type oo 

say. The problem is that at v, 2t t~ triangles meet with an incident angle equal to z r t / n ,  

so that the argument of  z changes by a total amount of  2 z r t / t  I. If  we assume, possibly 
after an affinity, that v is at the origin in the complex plane, we can choose Z ----- Z t'/t 

as a local parameter in the neighborhood of  v on T.  This parameter glues holomorphi- 

cally with z away from the vertex. Moreover, the parameters Z of  the triangles incident 
at v glue holomorphically to give a global coordinate in a small neighborhood of  v. The 

other types of  vertices are treated in an analogous fashion. That this complex structure 
coincides with the one given in Section 4. I is clear. A priori, the Euclidean structure of  
the triangle is crucial for the mechanical problem, whereas the complex structure may 

look very artificial. However, the differential dz, which is crucial for the classical motion 

(away from the boundary, the equation of  motion says that the velocity ~ is constant), ex- 
tends holomorphically on T.  Close to a vertex, of type c~ say, we have dz (x  z t / t ' - l d Z ,  
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so that the extension of  dz has a zero of  order t / t '  - 1. The total number of  zeros is 

thus 

(r ,)+s,(S I ) r ~7 ~S 1 + } 7 - 1  , (4.50) 

which is just the opposite of  the Euler characteristic, as was to be expected. We shall see 

later that the other holomorphic differentials on T also have a very natural interpreta- 

tion. 

Because the oriented triangular group of  T is Abelian, we know from Section 4.1 that 

there is a holomorphic map from Fn to the algebraic curve associated with T.  Counting the 

triangles on the two curves, we see that the map is of degree n and that the algebraic curve 

associated to T is the quotient of  Fn by a subgroup of  Dn of  order n, which coincides, if 

(n, 3) = 1 or r - s  -¢ 0 mod 3, with the isotropy subgroup of a fixed flag. It is not difficult to 

see that the group fixing a flag of symbol say (oo01 ) on T consists of  the elements #0#ja b/z~c 

where the integers a, b and c satisfy ar  + bs + ct  = 0 mod n. But we know that on the 

Fermat curve the corresponding transformation ~,a pb pc is " ' 0 " 1  " ' o c  

(u; v: w) > (~2au; ~2bv; ~2Cw). (4.51) 

In the affine model the action is x ~ ~2(a-C)x, and y ~ ~e(b-c)y .  The most obvious 

functions, invariant under these substitutions, are X - x n, yn and Y - xr  y s . The first and 

third satisfy yn = X r (1 - X )  s, which is just the equation for Cr,s,t (n) defined in Section 3. 

The map (X,  Y) e Cr, s, t(n) --~ X has obviously degree n, while (x,  y)  e Fn ~ x n has 

degree n 2. Thus the intermediate map (x,  y )  e Fn --~ (x n, x r y  s) has degree n. This implies 

that the invariants X and Y form a complete set and that the triangular curve Cr.s.t (n) is a 

(singular) model for the algebraic curve associated to Tr, s,t. 

The holomorphic differentials on Cr.s.t(n) are simply the invariant differentials on Fn. 
a b c Under R 0 R 1 Roo, the differential o#.g,? given by (4.38) picks a factor ~2(a?+bg+c[). For a 

triplet (a, b, c) satisfying ar  + bs + ct  = 0 mod n, this factor is 1 if and only if there 

is an integer h e 77n such that (5, g, [) = ( (hr ) ,  (hs) ,  (h t ) )  (where as before, (rn) is the 

representative of  m modulo n in the interval [0, n - 11). The number of  such h, yielding the 

number of  holomorphic 1-forms on Cr, s.t (n),  is equal to the genus. 

Now let h e 77* be such that (hr) + (hs) + (ht) = n. The triangular group of ~'~{hr), (hs), (ht) 

does not depend on h, nor does the description of  the complex structure. Hence Cr, s,, (n) and 

C{hr),{hs),(ht) (n) are isomorphic. Explicitly, if we write (hr) = hr  - T n ,  (hs) = hs - gn, we 

have the invertible map (X ,  Y)  e Cr.s.t(n) ~, (X ,  y h x - ? ( I  - X )  -'~) E C ( hrL ( hs ) , ( h t ) ( n ) .  

Moreover, if h e 77n has a common factor with n, say d, the above map is still defined, but 

has degree d and the image is C<hr)/d.Ihs)/d,<ht)/d(n/d). Although not identical, this is quite 
reminiscent of  Section 3. We can now come to another "coincidence". 

We have seen in Section 2 that the parity rule puts severe restrictions on the possible 

couplings among characters in a modular invariant partition function. This parity rule was 

expressed in terms of  the sets Hr,s , t  = {h e 77*: (hr) + (hs) + (ht) = n} where (r, s, t) 
were interpreted as the affine Dynkin labels of  integrable weights. Then the characters Xr, s j  

and Xr',s',t' can be coupled only if Hr,~,t = Hr' , ' , ' -  We have just seen that Hr.~,t also 
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x 2 4 + y 2 4 =  1 

¥ 

y 2 4  = X ( 1  - X )  

[(1,1,22),(5,5,14),(7,7,10), (11,11,2)] 

y 12 = X ( 1  - X )  
[(1,1,10),(5,5,2)] 

¥ 

y 6  = X ( 1  - X )  
[(1,1,4)] 

T 
y 3  = X ( 1  - X )  

[(1,1,1)] 

A 

y s  = X ( 1  - X )  

[(1,1,6),(3,3,2)] 

CP1 

A V 

r 4  = x ( 1  - x )  
[(1,1,2)] 

Fig. 3. Triangular curves CI, 1,no-2 (no) related to su (3) modular invariants. The top three specify the identity 
blocks of three exceptional invariants, at height no = 24, 12 and 8. The two elliptic curves, corresponding 
to (1, 1, 2) (no = 4) and (1, 1, 1) (no = 3), are not isomorphic, having modulus r = i and r = e 2irt/3, 
respectively. 

describes the billiards that are associated to the same triangular c u r v e  Cr,  s, t (n). But there is 

a direct and puzzling though incomplete connection between triangular curves and modular  

invariants, that in addition involves non-invertible elements of  7/n. 

We start with F24, the Fermat curve of  degree 24. We have seen that F24 is a covering 

of  some triangular curves, which themselves are coverings of  other triangular curves. Let 

us first consider the triplet (1, 1, 22), associated with the character of  the identity operator 

at height n = 24, and take all its multiples by elements h of 7/24. After reduction modulo 

24, we keep only those triplets which have no zero component and whose sum is equal to 

24, obtaining in this way 11 triplets (or triangles). If  one classifies them according to the 

genus of  the associated triangular curve, one finds four triangles of  genus 11, two of  genus 

5, two of  genus 3, two of  genus 2, and two of  genus 1, the last two being associated with two 

non-isomorphic genus 1 surfaces. Thus there are six different curves which are involved. 

They are all isomorphic to C1,1,n0-2(n0) for some no dividing 24. The six curves are shown 

in Fig. 3, where the arrows denote covering maps. 

The puzzling observation one can make is the following, and concerns the type I ex- 

ceptional su(3)  modular  invariants (those which can be written as a sum of squares with 
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only positive coefficients). One observes that the triangles associated with C1, l.n0-2 (no) for 

no = 24, 12 and 8 give precisely the content of  the block of  the identity in the exceptional 

modular invariant at height no. The only element which is not encoded in the picture is 

whether a character that is labeled by the permutation of a triangle appears or not. More 

precisely, one sees that: 

- For no = 24 : the four triangles (of genus 11) are (1, 1,22), (5, 5, 14), (7, 7, 10) and 

( 11, 11, 2). The exceptional invariant at height 24 is 

E24 : 1X(1,1,22) -~- X(5,5,14) -~- X(7,7,10) -Jr- X(lI,11,2) q- all perm.I 2 + . . .  (4.52) 

so all permutations appear. 

- For no = 12 : the two triangles are (1, 1, 10) and (5, 5, 2), and the invariant partition 

function reads 

El2 = [X(I,I,IO) -~ X(5,5.2) + all perm.I 2 + . . .  (4.53) 

so again all permutations appear. 

- For no = 8: there are two triangles, (1, 1,6) and (3, 3, 2). The partition function reads 

E8 = Ix(I,1,6) + X(3.3,2)12 + ' (4.54) 

and the permuted symbols appear in other blocks. 

The same pattern persists for the smaller values of no: for no = 6, the triangle (1, 1,4) 

specifies the identity block in the diagonal and complementary invariants depending on 

whether permutations are included or not, whereas for no = 4 and 3, the identity blocks 

of  the diagonal invariants are reproduced. One is tempted to apply the same idea to the 

other blocks of  the exceptional invariants, starting for instance with the triangle (1,7, 161) 

appearing in the second block of  E24. Alas, the outcome is disappointing, and that is one of  

the reasons to believe that our observations, however troublesome, are mere coincidences. 

5. The Riemann  surface of  a RCFT on the torus 

In this last part, we would like to see to what extent the action of the modular group on 

the characters of a general rational conformal field theory can be related to its action on 

algebraic curves, which we might then want to identify. In particular, rational conformal 

field theories like to organize in families indexed by integers (for example the height in 

WZNW models), and it is therefore a natural question to ask whether these families can 

be put in correspondence with families of  curves, just like the su(3)k WZNW models are 
related to the Fermat curves in the way detailed in the previous sections. We show here that 
a compact Riemann surface can be canonically associated with any rational conformal field 

theory. Each such Riemann surface has an algebraic model, but to compute it explicitly 

turns out to be in practice difficult. Nonetheless general features can be established. We 

will present the complete details for the su(3) W Z N W  models, at level k = 1 and k = 2. 
The most naive hope would have been that the associated algebraic curves are the Fermat 
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curves of  degree 4 and 5, respectively, but as we shall see, this is not the case. The surprise 

however is that the curve associated with su (3)1 possesses a covering by the Fermat curve 

of  degree 12, and is nothing but one of  the triangular curves. 

5.1. General setting 

We start with some general facts, which are true for the WZNW models, but that otherwise 

might well be consequences of  the general axioms that a rational conformal field theory has 

to fulfill. Since we are not aware of  a complete derivation of  them, we content ourselves 

with listing them as mere assumptions. 

(1) The theory involves only a finite number N of  representations of  the chiral algebra. We 

denote them by ~ p ,  0 < p < N - 1, with the convention that ~ 0  contains the identity 

operator (or the operator of  smallest conformal weight in the non-unitary case). 

(2) Chiral restricted characters are well defined, that is, 

Zp(r) ~ tr~pe 2iTrr(L°-c/24) (5.1) 

is holomorphic in the upper-half plane. Two restricted characters are equal if they cor- 

respond to complex conjugate representations. These are often the only linear relations 
among them. 8 

(3) There exist unitary matrices Sp,p, (symmetric) and Tp,p, (diagonal) such that 

Xp(-1/r)  = Z Sp'P'XP'(r)' XP(I" + 1) = Z Tp,p'Xp'(r)" (5.2) 
p~ pt 

They both have finite order and their entries are in a finite Abelian extension of  Q (a 

simple consequence of  [5]). The square of  S is the charge conjugation. These matrices 

yield a representation of  SL2(7/) through the map 

The restriction of  this representation to the subspace of  conjugation invariants descends 

to a representation of  PSL2(7/). This is the subspace we shall be dealing with in the 
sequel. 9 

(4) The kernel of  this representation of  P SL2 (7/) (or equivalently of  SL2 (7/) for the original 
representation) is very large [43]. More precisely, the kernel is an invariant subgroup, 

call it F ,  of  finite index in PSL2(7/). The intuitive reason is that the characters can be 
written in terms of  theta functions of  a Euclidean lattice, and that S and T are closely 

related to the finite Fourier transform on a finite group, namely the quotient of  the 

lattice by a sublattice of  finite index. A proof for affine algebras is contained in [9]. 

8 A counterexample is provided by the affine algebra D4 at k = 1, where, because of the triality, three 
inequivalent representations have the same restricted character [9]. 

9 When other linear relations among the characters exist, we simply pick a maximal set of linearly inde- 
pendent characters and work with these. 
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A pedestrian approach in the case of  su(N)k W Z N W  models, showing that in fact 

the principal congruence subgroup F2U(U+k ) is in the kernel, can be found in [22]. A 

general and more conceptual proof, starting from axiomatics of  rational conformal field 

theory, would be very interesting. 

These assumptions lead naturally to the following construction. The kernel F is a Fuch- 

sian group, and the quotient of  the upper-half plane g2 by F defines a Riemann surface 

Z' with punctures, which has a well defined compactification Z'. The surface L" may be 

described as the union of  ~ F  for all ~" 6 F - PSLz(Y_)/F, where F is a fundamental 

domain for g2/PSLz(Y-), for instance 

F = {r E ©: [rl > 1 and IRer l  < 1}. (5.3) 

£7 has punctures located at the images of r = i ~  under F .  When one compactifies 

by filling these punctures, one gets the compact  surface S ,  of  which a triangulation 

is given by {~'F: ~" E F} where those edges and vertices equivalent under F are to be 

identified. 

In the rest of  this section, we will consider in more detail the association RCFT , 

compact  Riemann surface ~ .  l0 More specifically, one would like to answer three questions: 

- What general features do these Riemann surfaces have? 

- How explicitly can we describe them, for instance by giving equations for an embedding 

in some affine or projective space? 

- Is there some nice way to characterize the family of Riemann surfaces that arise in this 

way from rational conformal field theories? 

Although we have not been able to answer the third question, we can nevertheless make 

definite statements about these surfaces. Useful references for quotients of  g2 by Fuchsian 

groups are [44,45]. 

As F is an invariant subgroup of PSL2(~_), we can draw general conclusions about the 

quotient ©/F.  The projection (9IF = ,~ ~ g~IPSL2(77) ~ C - this last equivalence 

being via the standard modular  function j ( r )  - has a holomorphic extension Z' > C P  1, 

ramified only at 0, 1728 and c~. l i The group PSL2(Y_) has unique invariant subgroups 

of  index I, 2 (related to the fact that j - 123 = 2162g32/r/24 ~- j2/2 is a perfect square, 

the q-expansion of  jl/2 starting as q - l / 2 )  and 3 (related this time to the fact that j = 

123g3/r/24 --  j3/3 is a perfect cube, 12 the q-expansion of  jl/3 starting as q-l~3). The 
A 

associated compact  Riemann surfaces have genus 0. If the index I F I  is larger or equal to 4, 

10 Because ~- is defined from the representation carried by the full set of independent characters, we could 
say that it is the surface associated with the diagonal RCFE In the same way, one can associate Riemann 
surfaces, to subrepresentations corresponding to non-diagonal theories. 
I 1 At this point, it would be easy to make contact with the formalism of triangulations briefly presented in 
Section 4.1. However, starting from the projection ~ ~ CPl, the algorithm described in Section 4 would 
construct 27', a quotient of ~ by a subgroup of F 2 with more punctures than 27, but of course such that 
,U = 2?. In particular the cartographic group is closely related, but not equal, to PSL2(77)/F. But other 
meromorphic functions ramified only over three points can be used to do cartography. This relationship with 
triangulations will be explicited in a specific example_in Section 5.2. 
12 Jl/3 is the character of the only representation of E8, level 1. 
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the ramification structure of  the projection map E --+ CDl is fixed: the ramification index 

is 2 above j = 1728, 3 above j = 0 and n o  (the order of T in F )  above j = ~ .  This 

implies that the Euler characteristic of S is 

^ 6 - n e ~  
2 - 2g~- = I r l  6n----~ (5.4) 

A 

The number of  punctures (or cusps) is equal to IF I / n o .  Let us describe in some detail the 

easiest cases, namely the surfaces of genus 0 and 1. 

If  151 >_ 4 and g~- = 0, there are four possibilities (platonic solids): n o  = 2, 151 --- 6 

(the dihedral group of  order 3, F = F2 ); n o  = 3, 151 = 12 (the symmetry group of  the 

tetrahedron F = /'3); n o  = 4, 151 -- 24 (the symmetry group of  the octahedron F = F4) 

and n o  = 5, IFI = 60 (the symmetry group of the icosahedron F = /"5). 

If  noo = 6, the resulting quotient is a torus, and there is now an infinite sequence of  

nested invariant subgroups An of P S L 2 ( W )  containing T 6 and of  finite index. We denote 

the corresponding quotients by A'n, n = 1, 2, 3 . . . .  Let us start with the smallest one, A1, 
which is the quotient of  P S L 2 ( Y )  by its commutator subgroup PSL2(7?) c°mm. It has order 

6, and is isomorphic to the cyclic group 7/6 (a simple consequence of  S 2 = (ST) 3 --- 1 plus 

S T  = T S ) .  Both j l /2 ,  the square root of  j - 123, and j l /3 ,  the cubic root of  j ,  carry a one- 

dimensional (hence Abelian) representation of  PSL2(7 / ) ,  and they generate the function 

field of  the quotient ~ / P S L 2 ( 7 / )  c°mm. This algebraic curve is, as announced, a torus since 

j2/2 = Jl/3 - 123" It is isomorphic to the cubic Fermat curve, although its uniformization 

by j l / 2  and j l /3  is not the one we gave earlier. The other An can be constructed as quotient 
groups of  their projective limit A'oo. 

A'oo is the largest factor group with noo = 6, and by definition is the quotient of 

PSL2(7 / )  by the smallest invariant subgroup containing T 6. It thus has the presentation 
(S, T [ S 2, ( S T )  3 , T6), is of  infinite order, and is isomorphic to the cartographic and sym- 

metry group of  the regular triangulation of  the plane. To see this concretely, set p = e i~r/3, 

and let s and t be the Euclidean transformations of  the complex plane given by s • z --~ 1 - z 

and t : z -+ pz .  Then obviously s 2 = t 6 = 1, and one checks that (st) 3 = 1 as well. So 

the group generated by s and t is a quotient of  A'oo. The transformation a = st  3 is simply 

the translation z -+ z + 1, and conjugating by t, we find that b = t s t  2 is the translation 

z ~ z + p. Further conjugations by t give unit translations along the other axes of  the 

lattice generated by 1 and p. So the group generated by s and t is the semi-direct product 
of  the translations of  the lattice and the rotations generated by t, that is, the full symmetry 

group of  the lattice. On the other hand one can check explicitly that in A~oo, A = S T  3 and 
B = T S T  2 commute. As a consequence, any element of.2,oo can be written in a unique way 
as T J AP B q with j between 0 and 5, and p and q in 7/. Indeed we first check that S = T3 A -  1, 
S T  = T 4 A - 1 B ,  S T  2 = T s B ,  S T  3 = A ,  S T  4 = T A B  -1 a n d S T  5 = T2B-1.  Usingthese, 

one checks that the set of  elements of  A '~  that have a decomposition T j A p B q contains 
1, is stable under multiplication on the left and on the right by T and S, so that this set is 
_4~. The decomposition is unique because the corresponding decomposition in the group 
generated by s and t, a priori a quotient of  A ~ ,  is well known to be unique. 
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Now for finite n, An is the quotient of  Am by the further relation A n = 1 (or equivalently 

B n = 1), and has the presentation 

A,z = (S, T I $2, (ST) 3, T6, (ST3)n) . (5.5) 

The order of A'n is 6n 2. The corresponding Riemann surfaces g)/An are all isomorphic to 

the cubic Fermat curve F3 (with the torsion points of  order n as punctures). This is because 

T induces a cyclic group of automorphisms of order 6 of the associated toms, fixing a point 

(the coset of the point at infinity in g)). For n = 3, the uniformization of F3 by 5)/A3 = ,~,3/C3 

is the one we gave earlier in Section 4.2. 
The -4n, n > 1, do not exhaust all factor groups of PSL2  (7/) of finite order with n ~  = 6, 

but all of  them are factor groups of  the -'~n. For instance, quotienting A ~  by the relation 

A B  = 1 - it implies A 3 = 1 - ,  one obtains a group of order 18 which is A 3 / ( S T 2 S T - 2 ) .  

Another common feature of  all the Riemann surfaces arising from our construction is that 

they have a rather large group of  automorphisms. This group contains F ,  but in fact, unless 

r is a sphere or a torus (in which case the automorphism group is infinite), F is the full 

automorphism group of  Z'. That F is the group of  automorphisms of  Z' is the consequence 

of a general result (see for instance [45]), and the statement relative to the compact surface 

Z' is proved in Appendix A. 

We now come to the question of  the explicit and concrete description of Z', by means of 

algebraic equations. We do this by looking at the function field of  Z'. 

The restricted characters are holomorphic on Z', and meromorphic on Z'. This is proved 

by a simple analysis of their behavior at the punctures. Characters are meromorphic at the 

infinite parabolic point because the eigenvalues of L0 in the representations of the chiral 

algebra are rational and bounded below. To conclude for another puncture (necessarily a 

rational point on the real axis), one chooses an element g of PSL2(7/)  that maps it to 

r =- icxz and use the fact that PSL2(7/)  acts linearly on the characters. This shows that the 

singularity of  Xp at a puncture is at most as strong as the singularity of X0 at r = i ~ .  It 

is weaker if the matrix element of  g between Xp and X0 vanishes. This proof parallels the 

argument showing that So, p is real positive for any p. 

The function field M of ~' certainly contains all rational functions of the characters Xp 

and of  the modular invariant j .  That it contains nothing more can be proved in the following 

way. A classical theorem states that, given a non-constant meromorphic function f on Z' of  
degree d, the function field AA is a simple Galois extension of C ( f )  of degree d [46]. That 

is, there exists a function g satisfying an irreducible polynomial equation of degree d with 

coefficients in C ( f ) ,  in terms of which .Ad = C ( f ) ( g )  = C( f ,  g). Choosing f = j ( r ) ,  

of degree IFI shows that A,4 is a Galois extension of degree IFI of C(j), with Galois 

group Gal(AA/C(j))  = F .  Now F acts linearly on the characters, and induces distinct 

automorphisms of the field .Ad x generated by the X's and j ,  that all fix C( j ) .  This implies 

that .Ad x is a subfield of  .Ad of  degree IF I over C( j ) ,  hence equal to Ad. 
Thus we have .A/[ = AA x = C(X0, Xl . . . . .  XN-I,  j ) ,  but since it is also equal to C( j ,  g) 

for some g, the field is not freely generated by the characters and j .  Let us consider the set 
I ~  of  all polynomial relations P(X0 . . . . .  XN-I ,  j )  = 0. It is fixed by F since F acts by 

automorphisms of C(X0 . . . . .  XN-J,  j ) .  Moreover, any polynomial P(Xo, Xl . . . . .  XN-1) 
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invariant under the action of F on characters is a modular invariant function of r,  holomor- 

phic in the upper-half plane without poles at finite distance, so a polynomial in j ,  say Q( j ) .  

Hence 

P(X0, X1 . . . . .  XN-1) -- Q ( j )  = 0 (5.6) 

and this yields an element of  I~-. 13 

Every relation of  I-~- gives an equation for ~ .  More precisely, the locus in C N+ l where all 

relations are satisfied is (by definition) an algebraic variety, and evaluation of X0 . . . . .  XN-l 

and j gives a holomorphic map from Z into this variety, injective except perhaps at a finite 
number of  points. But in fact the elements of  I T  corresponding to invariants under F (of 

the form (5.6)) give a complete set of  equations for Z ,  because they describe a covering of 

the j -sphere  containing the model for • with at most IF] leaves. Indeed for every value of 
j ,  we get a value for the invariants Pi, and we know from invariant theory [48] that there 
are at most IF[ points in C N corresponding to these values (namely the points in an orbit). 

Hence this covering is an affine model for E .  Let us also observe that this affine model is 
well suited to deal with questions concerning the values characters can take. For instance, 

the divisors of  the characters (namely the zeros and the poles) are nicely encoded. 
From the set of  equations (5.6) (for all F-invariant polynomials P), elimination leads to 

irreducible polynomial relations between every single character and j .  One easily sees that, 
if Ap denotes the stabilizer of  Xp in F ,  these equations take the form 

1-I ( x  - Fxp) = o.  (5 .7 )  
A 

yEF/Ap 

The coefficients of  this monic equation are polynomials in j ,  since they are symmetric func- 
tions of  the roots, which are themselves linear combinations of  the characters, holomorphic 

in ~. Loosely speaking, this means that the characters are algebraic integers over Q( j ) .  
In fact these arguments also solve the problem of the "second generator" of the function 

field M ,  and provide another model for Z .  Since the matrices S and T generate a finite 
group of order r F[,  we can find a linear combination g = Y'~p CpX p of the characters such 

that its orbit under F is of  cardinal pF]. From this follows that g satisfies the irreducible 
polynomial equation: 

I-I ( x  - Fg) = o. (5.8) 
yEF 

As before the coefficients of  X ~ are polynomials in j .  The simple extension of C ( j )  obtained 

by adding g and its powers is of  degree I FI ,  and is therefore equal to the whole of  the function 
field .M = C( j ,  g). Eq. (5.8) is a plane curve that is a (highly) singular model for ~ .  

Finally let us comment  about some automorphisms of  F .  Set Mrestr = a'M~restr ,~,,.~p,p,, Tp, p,), 
the algebraic extension generated by the matrix elements of  T and S, acting on the inde- 

13 As mentioned before, it can be useful to deal with the numerators of characters rather than with the 
characters themselves. One way to do it is to look at the ring of projective invariants (invariants up to a phase 
for the action of F on characters). Those are polynomials in Jl/2 and Jl/3. 
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pendent restricted characters. We want to show that the Galois group Gal(Mrestr/Q) acts 
as automorphisms of t ~. This is obvious for T, because for every Galois transformation, 

~ ( T )  = T h for an integer h coprime with n~ ,  the order of T. That or(S) is also a word in 
T and S is less trivial, but can be seen as follows. 

First we show that the ideal I~- can be generated by polynomials with integral coefficients. 
In the language of algebraic geometry, this says that Z' is defined over Q, a property shared 

with the Fermat curves. The point is that the insertion of the Puiseux series for Xr and j 
- they all have integral coefficients - in a polynomial P(Xo . . . . .  XN-1, j )  shows that the 
condition for P to belong to I~- is expressed by a linear system with integral entries, the 

unknowns being the coefficients of P. We can therefore choose a basis of solutions with 

integral or rational coefficients. We call it an integral basis. 

For ~r 6 Gal(Q/Q),  we extend the action of cr on polynomials by acting trivially on the 
characters and j .  Now let P be a polynomial in I~- with integral coefficients and X be an 

element of F (for instance S). We make the following observations. First P (~r (X) .  X, J) = 

~r(P(X • X, J)) because P has integral coefficients. But P ( X  • X, J) = P ( X  . X, X • j )  

because j is invariant under F. Next P ( X . x ,  X .  j ) ( r )  = P (X, J) (X r) which is identically 

0 because P(X,  J) belongs to I-~-. Hence P ( X  • X, J) belongs to I2-, and can be expressed 
as a linear combination (with complex coefficients) of elements of an integral basis for 12-. 
The Galois transformation cr acts trivially on the integral basis, so that P(cr(X) • X, J) = 

~r(P(X . X, J)) is in I ~  as well. This means that ~r(X), a linear transformation of the 
characters, induces an automorphism of Z' fixing j .  The proof is finished since F is the set 

of all such automorphisms. This proves at the same time that the extension Mrestr of Q iS a 
Galois extension, as already known from [5]. 

When S and T correspond to the modular transformations of affine characters, one can 
be more explicit. As mentioned above, there is a principal congruence subgroup, say IN,  

in the kernel of the representation generated by S and T, so that they form a representation 
of PSL2(7/N), for some N. In this case, it is conjectured (and shown for large families of 
examples) that the cyclotomic Galois transformation ~rh acts on S by multiplication by the 

matrix representing the group element 

h - l )  

of PSL2(7/N) (thus h - I  is the inverse ofh modulo N) [47]. This result implies the following 

action of ~h on S: 

~rh(S) = S T  h-j S T h S T  h-u S. (5.9) 

Illustrations of this formula are given in Section 5.2 and in Appendix B. 

5.2. The Riemann surface o f  su(3) level 1 

We could illustrate the machinery of the previous section on various rational conformal 
field theories, but as su (3) was central in our previous investigations, we shall give here the 
complete treatment of su(3) at level 1, relegating to an appendix the case of su(3), level 



176 M. Bauer et al./Journal of Geometry and Physics 22 (1997) 134-189 

2, already much more complex. It will soon become clear that explicit computations of the 
Riemann surface of a rational conformal field theory tend to be painful. To compute even 
the genus of the surface is quite a challenge, since most of  the time very little is known 

about the finite group S and T generate. 
The affine Lie algebra su (3)1 has three integrable representations, corresponding to the 

shifted weights (1, 1), (1, 2) and (2, 1). To simplify the notations, we denote the three in- 
dependent characters as Xo = XO,l), gl =- X(1,2), X2 = X(2,1). Setting ~ = e 2izr/12 and 
co = e 2i3r/3, the expressions for S and T in the basis (Xo, Xl, X2) are 

S = ~ 1 co , T = ~3 0 . (5.10) 
1 co 2 0 ~3 

The restricted characters X l and X2 being equal, we are left with a two-dimensional repre- 

sentation of the modular group, given in the basis (X0, ½ (Xl + X2)) by 

l(, ,°3) S =  ~ 1 l ' T =  . (5.11) 

The extension defined in the previous section is clearly mrestr ~-- Q ( ~ ) ,  with Galois group 
over Q isomorphic to 7/~2 = {1, 5, 7, I1}. One easily obtains its action on F': 0-5(S, T) = 
( S T  6, T5) ,  0" 7 (S,  T )  = (S,  T 7) and tYl I (S, T )  = (ST  6, T 11 ), in agreement with the general 

formula (5.9). 

Finally the Weyl-Kac formula gives the following Puiseux series for the restricted char- 
acters: 

Xo = q-l~12 [1 + 8q + 17q 2 + 46q 3 + 98q 4 + . . . ] ,  (5.12) 

XI = ql/4 [3 + 9q ÷ 27q 2 + 57q 3 + 126q 4 + --.].  (5.13) 

As before, let F be the kernel (in PSL2(Y_)) of the representation (5.11) and F be the 
corresponding quotient. Let us recall that our main interest is the study of the Riemann 

surface with punctures 27 = © / F  and the corresponding compact surface 27. Our first task 
is to compute the order of F .  

It is quite clear that T has order 12 in F,  but one can also observe that T 3 is central, 
namely it commutes with S. Consequently F is a quotient group of /~  ---- (S, T I $2, (ST) 3, 
T 12, S T  3 ST-3 ) .  The tetrahedron group/ '3  = (S, T I S 2, (ST)  3, T3), of  order 12, is itself 

a quotient group of /~  by the cyclic subgroup generated by T 3. Since T 3 is of  order 4 in/~, 
it follows that ]/~1 = 48. On the other hand, the elements T i and S T  i for 0 < i < 1 1 are 
all distinct in F because S is not a power of  T (its matrix representation is not diagonal). 
Moreover S T S = T -  1S T -  1 gives still a distinct element, because T -  1S T -  l is not a power 

of T, and S T S  is not equal to S times a power of T. Thus IFI > 24, which implies F = /~ 
(since the order of  F must divide that of/~) .  The genus o f ~  is then given by (5.4), which 
yields g = 3 (same genus as the Fermat curve F4). The number of  punctures of  27 is 

A 48 4. I F f / n ~ -  1 2 -  
As we have seen in the previous section, invariant theory for the two-dimensional rep- 

resentation of F on characters will give us a description of ~ .  Invariants for finite groups 
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can be computed in a systematic way, but the procedure is generally cumbersome, so that 

it may be more efficient to find shortcuts based on geometrical insights. We used both to 

obtain the following results (as well as those of  Appendix B). 

The generating function for the number of  invariants of  degree n, call it dn, under the 

representation (5.11) of  F" is given by the Molien series [48]: 

~ 1 ~ 1 1 
F( t )  = ~. . .dnt n = A ~ -- . (5.14) 

n=0 IF[ A ~ d e t  (1 - t~') (1 - t4)(1 - t 12) 

The ring of  invariants is freely generated 14 by two algebraically independent invariants, 

of  degree 4 and 12, which one can choose as 

P4(X0, XI)  : X3Xl -- X 4 : 3, (5 .15)  

P12(XO, X1) = [2704 4- 8XOX~] 3 = j .  (5.16) 

As mentioned before, these invariants are modular invariant functions of  r, holomorphic 

in g~, that are determined from the Puiseux series of  X0 and Xl by looking at the singular 

terms in q. 

The first invariant (5.15) alone yields a plane curve which is a non-singular model for 

the Riemann surface associated with the affine model su(3) at level 1: 

x3y  _ y4 = 3Z 4. (5.17) 

Being smooth of  degree 4, its genus is equal to 3, as expected. The second invariant (5.16) 

gives I? as a covering of  the j-sphere of  degree 48, and allows to compute the divisors of  

the two restricted characters. In terms of  the projective coordinates (x; y; z), X0 has four 

simple zeros located at (0; Y0; 1) with y4 = - 3  (where j = 0), and four simple poles at 

(1; 0; 0) and (wk; 1; 0) for k = 0, 1, 2. Similarly Xl has a triple zero at (1; 0; 0) and three 

simple poles at (wk; 1; 0) for k = 0, 1, 2. In particular, X0 and Xl are of  degree 4 and 3, 

respectively. 

It is not difficult to obtain the polynomial equations relating the characters to j ,  as in (5.7). 

The stabilizer of  XJ in F is of  order 3 (T4Xl = XI ), so that the irreducible equation relating 
Xl to j is of degree 16, but easily seen to be of degree 4 in X 4 because Xl, ~3Xl, se6Xl and 

~9X1 all solve the same equation. The coefficients of  the polynomial are easily determined 

from the Puiseux series of  Xl, and one finds 

(1 4- 3X4)3(3 4- X 4)  - l j X 4  --- 0. (5.18) 

So C( j ,  Xl) = C(XI) is a genus zero algebraic extension of  C( j )  of degree 16. However, 
this extension is not Galois, and the Galois closure defines an algebraic extension of C( j )  

! 4 A n  n - d i m e n s i o n a l  representation of a finite group gives rise to a ring of invariants which is freely generated 
by algebraically independent invariants iff the group is generated by pseudo-reflections in an n-dimensional 
complex space [49]. This last paper establishes the classification of such groups. The list, containing 37 
entries, can also be found in [48]. 
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m 

of degree 48, isomorphic to the function field of 27. The other character X0 has a trivial 

stabilizer, and therefore generates, along with j ,  the function field of S.  It satisfies a 
polynomial equation of degree 48, this time of degree 4 in X012 (same reason as above), but 

more complicated: 

X4 8 + 4(27648 -- 61J)x36 + 
243 

2(6 115 295 232 + 16 809 984j + 365j 2) X2 4 

177 147 

4(338 151 365 148 672 - 256 842 399 744j + 42 633 216j2 _ 547j3) X j2 

+ 387 420 489 

j4 
+ -- 0. (5.19) 

387 420 489 

m 

This defines the function field of E as the simple extension C(j ,  X0), and provides another 
projective model for 27, this time very singular. 

It remains to show that 2? is distinct from the Fermat curve F4. This one can do by 
decomposing the Jacobian of ,U, and by proving that it splits into two elliptic curves with 
modular invariant j ---- 1728, and one elliptic curve with invariant j = 0. This will definitely 

establish the non-isomorphism of ~? with F4 since the latter is isogenous to the cube of the 

elliptic curve with invariant j = 1728. 
There are many ways to show the decomposition of the Jacobian of 27, but an instructive 

one is to resort to yet another algebraic model of the surface, which is in itself interesting 
since it turns out to be one of the curves we discussed in Section 4.3, in relation with 

rational billiards. The idea is precisely to use the cartographic machinery. Our general 
discussion showed that ~7 is defined over Q (as is confirmed by (5.17)), so that it can 

be realized as a covering of the Riemann sphere, ramified over three points. A possible 
choice is the following. Corresponding to y = 0, there is one "point at infinity", namely 
(x; y; z) = (1; 0; 0), while away from y -- 0, one sets x 3 = t y  3 and 3z 4 = (t - l)y 4, so 

that altogether 

(X; y; Z ) =  { (~'~ ~/~; 
(1; 0; 0) 

1' ~ - , ~ / ~  for t s ~ c x ~ , l < k < 3 , 1 < e < 4 ,  (5.20) 
/ 

fo t t  = ~ .  

It yields a covering of degree 12, ramified over 0,1 and ~ ,  where the ramification indices 
are, respectively, 3,4 and 12. Thus the corresponding triangulation obtained by lifting the 
standard triangulation of CPl consists of 24 faces, 36 edges and 8 vertices, from which 
one cross-checks that the genus is 3. If one labels the four points above 0 by the num- 
bers 1,3,5,7 (from top to bottom), and the three points above 1 by the numbers 2,4,6, 
one obtains the triangulation depicted in Fig. 4, where the center represents the point at 
infinity. 

It is not difficult to compute the triangular and cartographic groups, and we only quote 
the results. To be consistent with the way the vertices have been numbered, we say that 
the vertices of type 0, lying above 0, are those labeled by an odd number. Numbering the 
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Fig. 4. Triangulation of E as a covering of degree 12 of the sphere. The points above 0 are labeled 1,3,5,7, 
while those above 1 are numbered 2,4,6. The central point is the point at infinity. There is no identification 
among the radial edges, but perimetric ones are to be identified by pairs, as exemplified by the edges marked 
I and II. This leaves 36 distinct edges. The small numbers close to the center label the faces from l to 24. 

triangles as in Fig. 4, from 1 up to 24, one obtains that the action of the generators of  the 

triangular group on the ith triangle is 

o'o(i) = i - ( - 1 )  i mod 24, oh(i)  = i + ( - 1 )  i mod 24, 

- o % o ( i )  = i - 7 ( - 1 )  i mod 24, (5.21) 

where the representatives modulo 24 are taken between 1 and 24. From this, one easily 

computes the action of  the oriented triangular group 

p o ( i ) = i  + 8 ( - 1 ) i  m o d 2 4 ,  p l ( i ) = i - 6 ( - 1 ) i  m o d 2 4 ,  

p ~ ( i )  = i - 2 ( - 1 )  i mod 24. (5.22) 

The generators satisfy P0 = p~4, Pl = P £  and p ~  = l ,  so that the oriented triangular 

group is isomorphic to 7/12, from which it follows that the Fermat curve F12 covers E .  

Because of  the above relations between P0, pl  and poo, an e lement /zg/zb# c of  D ( E )  fixes 

a flag of  symbol (c~01) if  and only if  - 4 a  + 3b + c = 0 mod 12. The quotient surface was 

discussed in Section 4.3, and is nothing but the triangular curve C8,3,102). This yields a 

third algebraic model  for Z'. 

The projection F12 -~  C8,3,1 (12) allows to compute the period lattice. (The periods of 

all triangular curves Cr,s,t(n) can be found in [32].) From the results of  Section 4.3, the 

holomorphic differentials on C8,3,1 (12) are the cO,-s,t with (r, s, t) = ((Sh), (3h}, (h)) mod 
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12, that is, co8,3,j, o)4,3,5, and 0)4,6,2. From (3.5), the periods of  these three differentials 

along the homology cycles in FI 2 equal 

( v fo )8 '3 ' l ; fo )4 '3 '5 ; f °94 '6"2)  Yi,j (5.23) 

Since cycles in F12 descend to cycles in C8,3,1 (12), the period lattice of  the latter contains 

the lattice in C 3 formed by all integer combinations of  the vectors (5.23). Noticing that the 

second component of  (5.23) is obtained from the first component by the Galois automor- 

phi sm a5 (~) = ~ 5, one sees that this lattice is equal to {(z, or5 (z), w): z c 7/(~), w ~ 7/(o))}. 

It is of  rank 6 over 7/, hence of  finite index in the full period lattice, so that the two are 

isogenous: 

L ( E )  ~ {(z, ~rs(z)): z E 7J(~)} @ 7/(o)). (5.24) 

The first factor, which we may call L8,3, l, has been analyzed in Section 3.3, where it was 

found to be isogenous to the square of  77(i). Altogether we obtain 

L(-~) ~ [7/(i)]2 @ 7/(09). (5.25) 

6. Conclusions 

In this paper, we have tried to give some substance to a suggestion that had been made 

recently, concerning a possible connection between the modular invariant partition functions 

of  W Z N W  models based on the affine algebra su (3) and the geometry of  the complex Fermat 

curves. There are many technical similarities between the two problems. In particular, we 

have shown that the decomposition of  the Jacobian of  the degree n Fermat curve Fn into 

simple Abelian varieties is essentially equivalent to the modular problem for the affine 

su(3), at level k = n - 3. The relation was seen at the technical level through the su(3) 

parity selection rules. 

Besides this technical observation, which was at the origin of  the suggestion, we have 
pointed out some intriguing coincidences with a third problem, namely that of  the rational 

triangular billiards and the related algebraic curves. We have described at length the three 
circles of  ideas, and found that many of  the concepts in one of  them have counterparts in 

the other two, like for instance holomorphic differentials against affine characters, parity 
selection rules against complex multiplication, etc. Despite these fine mathematical rela- 

tionships, we have not been able to find a clear and definitive way to relate them to the list of  
modular invariants for su(3), nor even to give an indication as to why the list of  invariants 
is what it is. 

In an attempt to take the relationship between the modular problem and algebraic curves 
in a broader sense, we have shown that a Riemann surface can be canonically associated 
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with any rational conformal field theory. This could be done as a consequence of the fact that 

the matrices S and T, describing the modular transformations of the characters, generate 

a representation of P S L 2 ( 7 / )  which has a finite index subgroup in its kernel. The actual 

Riemann surfaces can be computed using invariant theory, as was illustrated in the cases 

of s u  (3), levels 1 and 2. Characterizing all the Riemann surfaces that arise from conformal 

field theories in the way described in the text may be hard, but the few explicit examples 

we have analyzed so far suggest the following questions. 

We have seen throughout this paper several infinite families of algebraic curves, and in 

particular the Fermat c u r v e s  F n . Is it true that every Fn is the Riemann surface associated 

with some RCFT, and if so, which one(s) correspond to a given Fn ? What about the triangular 

curves? Is there a more intrinsic way to see if two RCFTs have the same Riemann surface? 

Is it true that the conformal theories containing dual affine Lie algebras, in the sense of the 

rank-level duality, have related Riemann surfaces? 

According to the discussion in Section 3.4, the complete decomposition into elliptic 

curves is something rather rare in the context of Fermat curves, and happens for very special 

values of n only. Is it true that the Riemann surfaces coming from conformal theories have 

a generically large number of elliptic curves? 

There are some indications that the Riemann surfaces arising from RCFT are somewhat 

special, since for example they have a large group of automorphisms. In general the center 

of the automorphism group is trivial, but there is no reason to believe that it implies that 

the Jacobian has no complex multiplication. We saw for instance in su(3), level I, that 

the field of complex multiplication was larger than what should have been expected on the 

sole consideration of the automorphism group. Moreover this field was clearly related to 

the eigenvalues of the T matrix. Is this more generally so? Do the surfaces coming from 

RCFTs have always complex multiplication? And if so, is it related to T, and in which 

precise way since T is not central? 

We have no general answers to these questions, but looking at the algebras su  (2), su  (3) 

(see the text), so(8), E6 and ET, all at level 1, we found the following encouraging results: 

all have Riemann surfaces isomorphic to triangular curves (so(8) l has the Fermat curve 

t:.3 ~ Cl,l,l(3)), which all have complete decomposition in elliptic curves, and which 

all have complex multiplication. The other two algebras with two independent restricted 

characters, namely F4 and G2, also at level 1, are more complicated, but they have the same 

Riemann surface. 
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Appendix A. On automorphisms of quotient surfaces 

Let F be an invariant subgroup of PSL2(7/)  with finite index. Let £7 be the Riemann 
surface with punctures Q/1-' and let £7 be the associated compact Riemann surface. It is 

A 

known that F -- PSL2(~_) /F  is the group of automorphisms of E (see for instance [45, 

Theorem 5.9.4]), and thus is a subgroup of Aut £7,_the automorphism group of £7. Our_ goal 
in this appendix is to show that if the genus g of £7 is larger than 1, then F --- Aut E is the 

ful ! automorphism group. 
Let us assume that F is of index I in Aut £7 (a finite group since the genus of £7 is 

greater than 1). It is well known that the quotient of £7 by a subgroup G of Aut £7 has a 
natural structure of Riemann surface, the Euler characteristics, hence the genuses, of the 

two surfaces being related by the Riemann-Hurwitz formula. The number of pre-images of 

a point P ~ £7/G by the projection map £7 ~ £7/G is IGI /mp where mp is the common 

order of the stability groups of the pre-images of P. Thus P is a ramification point of 
order m p and multiplicity [Gl /m p. A straightforward application of the Riemann-Hurwitz 
formula then gives 

o z ( ,   A1, 

The sum over P is actually finite because only a finite number of points have m e  ~ 1. 

The projection map £7 ~ E / F h a s  aholomorphic extension-E ~ £7/1" ~- ~)/PSL2(7/)  

CP1, ramified only over 0, 1728 and oe, where the ramification order is respectively 3, 
2 and noo (the order of T in F). By the above formula, we have (as mentioned in the text) 

X(~-) = - , F I  ( ~  n l ) -  (A.2) 

On the other hand, the other projection, 2? -+ E /Au t  ZT, can be decomposed as £7 --~ 
- -  A - -  - -  

£7/1-' ~- CP1 ~ £7/Aut £7. Yet another application of the Riemann-Hurwitz formula 
ensures that a holomorphic map from the Riemann sphere to a compact Riemann surface 

can exist only if the latter is also a Riemann sphere. Therefore £7/Aut £7 ~ CPl and the last 
map, from CP1 to CPl ,  can be normalized in such a way that it fixes the point at infinity, 

implying moo > 1. Putting G = Aut £7 in (A.1), the genus of 27 can be computed from this 
second projection, and comparison with (A.2) yields 

, ,  1 / 'tl 6 noo m-oo + 1 - ~ . (A.3) 

It follows from (A.2) that g > 1 is equivalent to noo > 6, so that the left hand side is 
positive. This implies that the sum over P has at least two terms, since 1 - l i m p  < 1 for 
m p >  1. Also because 1 - 1~rap >_ ½, the value of the sum over P is at least 3 if it contains 
three terms or more, whereas if it contains two terms, its minimal value is 7, corresponding 

to mp I = 2, mP2 = 3. (For rap1 = mp2 = 2, the sum is smaller, being equal to 1, but it 
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renders the right hand side of  (A.3) negative, and must be excluded.) Thus we obtain the 

inequality 

' '  ( '  ' ) 
- - - -  > I . ( A . 4 )  
6 n~c 6 moo 

Finally one can observe that moo is a non-zero multiple of n ~ .  This is because the elements 
in F which fix a point on ~- form a subgroup of those in A u t ~  which fix that point. In 

particular, m~c > noc > 6 and this forces I = 1. Therefore F is the full automorphism 
group of N, as announced. 

Using the results of Sections 4 and 5 on the Fermat curves Fn, this gives another proof 
that the full automorphism group of Fn, n > 3, is Cn, of cardinal 6n 2. 

Appendix  B. su(3) level 2 

The su(3)2 WZNW model has six chiral integrable representations, labeled by the six 
dominant weights (1, 1), (1,2) ,  (2, 1), (1,3),  (2, 2) and (3, 1), with corresponding char- 

acters Xp. As explained in Section 2, they split into two orbits under the automorphisms. 
The S and T matrices accordingly factorize into a two-by-two piece acting on the orbit 
space, and a three-by-three Fourier kernel acting within each orbit. Following our general 

philosophy, we are interested in the independent restricted characters, and the representation 
of the modular group they carry, four-dimensional in this case. This amounts to going to the 

subspace of conjugation invariant characters. One may check that, if one puts the restricted 

characters in a matrix as 

X ~ ( X O X 1 ) ( =  X(I,I) X(2,2) "] 
- -  X2 X3 k, X(1,3) q- X(3,1) X(I,2) q- X(2,1) ,]  

the action of the modular group can be written as 

S ' x  ~ SlXSr -1,  T ' X  > T1XTr - l ,  

where (09 = e 2i~r/3) 

i (1 11) (o9 2 O) 
S, = ~ 2 - ' rl = 0 ' 

and (~ = e 2i~/5) 

(B.I)  

(B.2) 

(B.3) 

2i sin  sin ) 0) 
S r =  ~ , s i n . ~  - s i n ~  ' ( . ( B . 4 )  

The elements of  all these matrices belong to Mrestr ---- Q((15)- The corresponding Galois 
group, of  order 8, consists of  ~rh for h e 77~5. A general formula for the action of the 
Galois group on S has been given in Section 5.1, Eq. (5.9). In the present case, S and T 
generate a representation of PSL2(7715), so that the formula yields (2 -1 = 8 mod 15 and 
7 -1 = 13 mod 15) 

o-2(S ) ~--- S T 8 S T 2 S T 8 S ,  o'7(S ) = STI3STVST13S. (B.5) 
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These two elements generate the full Galois group. Its action on T is just crh (T) = T h. 
Useful for what follows are the Puiseux series of  the restricted characters: 

X(1,1) = q-2/15 [1 + 8q + 4 4 q  2 + -+-128q 3 -k- 376q 4 + . . . ] ,  

X(2,2) = q7/15  [8 + 37q + 136q 2 + 404q 3 + 1 072q 4 + - • .], 

)(1,3) = q8/15 [6 + 24q + 93q 2 + 264q 3 + 708q 4 + . . . ] ,  

X(I,2) ---- q2/15 [3 + 24q + 90q 2 + 288q 3 + 777q 4 + • • .]. 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

One easily checks that S 2 = (Sl/]) 3 = _ 1 a n d  TI 3 -~- 1, and similarly S 2 = (Sr Tr) 3 = _ 1 

and T 5 = 1. Of course the normalizations in the left and right factors are arbitrary since 

only their product matters, but our choice makes all four matrices have determinant 1. Then 

$1 and T1 on the one hand, Sr and Tr on the other hand, generate subgroups of  SL2(C). If  

we consider the quotients of  these subgroups by - 1, and keep the classification of  finite 

subgroups of  the special linear group in two complex dimensions in mind, we see that the 

left g r o u p / ]  is the double cover of  the tetrahedron group, hence of  order 2 x 12, and that 

the right group Fr is the double cover of  the icosahedron group, of  order 2 x 60. 

Let us denote the matrix that acts on the characters as Rlg__ R r  1 by RI × Rr. Then T 6 

acts as 1 x Tr, and T l° acts as 7] × 1. Similarly ( S T 6 )  9 a c t s  as S] × 1, while ( S T 1 0 )  9 

acts as 1 x Sr. This is enough to show that there is a surjection from ffl x Fr onto F ,  the 

group generated by the matrices S and T on the restricted characters, and that F -- ~ x Fr 

modulo the kernel of  this map, which is the diagonal 772 = { 1 x I, - 1 × - 1 } of  order 2. 

Therefore the order of  F is 1 ( 2 . 1 2 ) ( 2  • 60) = 1440. On the other hand the order of  T is 

manifestly 15, so the general formula (5.4) implies that the genus of  the Riemann surface 

associated with su(3)2 is equal to 73. The non-compactified surface 27 has 1440/15 = 96 
punctures. 

This number looks frightening, and to compute an algebraic model for it seems hopeless. 

Let us recall that according to the general discussion of  Section 5.1, what we have to do is to 

find a basis of  polynomials in the characters which are invariant for the action of  F .  There 

is at least one polynomial invariant which is easy to obtain: since all left and right matrices 

have determinant l, the determinant of  X is invariant under F .  A look at the Puiseux series 

shows that it is regular at q = 0, and that the zeroth order coefficient is equal to 6, so that 
it is exactly equal to 6: 

PE(Xi) = XoX] - X]X2 = 6. (B.I0) 

The ring of  polynomial invariants for F is more complicated than in the level 1 case. The 
Molien series for the number of  invafiants is 

1 + t 12 + t 20 + t 24 + 2t 30 + t 36 + t 40 + t 48 + t 60 

F ( t )  = (1 - tz)(1 - tl2)(1 - t20)(1 - t 30) (B.11) 

It shows that the ring is not freely generated by four invariants, but that there are more 
generators with relations among them. In this case, the ring of  invariants is a free mod- 

ule over C(P2, PI2, P20, P30) with basis {1, R12, R20, R24, R30, R~o, R36, R40, R48, R60}, 
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where the Pi's are "fundamental" invariants of degree i, and the Rj's are "auxiliary" invari- 

ants. Every Rj can be expressed algebraically in terms of the P/'s, but not polynomially. 
What we want to do is to compute enough independent irreducible invariants, namely three 
or four depending on whether they are equal to trivial functions of j or not. We have already 
found one, namely P2 given in (B.10), which clearly accounts for the factor (1 - t2) -1 in 
F(t). 

In order to compute invariants for F,  one can take advantage of the quasi-factorized 
form of F = ~ x Fr/7]2- In fact we deal with a true (even if not faithful) representation 
of ~ x fir so the 7/2 factor is automatically taken into account. Given four indeterminates 

w, x, y, z (they will soon become Xo . . . . .  X3), an element ~ x ~r acts on them by left and 
right multiplication 

A(w)4 Y X)~r-l-z 

If we write the variables w, x, y, z in terms of four others u l, u2, vl, v2 through 

(y x)(Ul) 
= X (Vl V2), (B.12) 

Z u2 

then obviously F'l acts on the u's  whereas ~r acts on the v's. It is clear that upon this substitu- 
tion, a polynomial invariant P(w, x, y, z) for ? becomes a (perhaps identically vanishing) 
linear combination of product polynomials pl(ul,  u2)pr(vl, v2) with p1 invariant under 

and pr invariant under ~ .  

We would like to go backwards as well, i.e. start with polynomial invariants Pl(ul, u2) 
for ~ and pr(vl ,  v2) for ~ and construct a polynomial invariant P(w, x, y, z) for F. 
This involves a nice analogy with Wick contractions. We define formal two-point functions 

(UlVl) = tO, (UlV2) = X, (U21)l) = y, {U21)2) -~- Z, and all others zero. The expectation 
value of a monomial in u l, u2, Vl and v2 is the polynomial in w, x, y and z obtained by doing 
all Wick contractions (obviously, this gives 0 unless the degrees in the u and v variables 
are equal), and we extend to all polynomials by linearity. We also include a normalization 

factor and shall use the explicit general formula 

, c e ,n -c t , f l , n - f l \  ( n )  -1 rain(or,/3) 
'~1 '~2 Vl "2 / = Y~. 

a=max(O,ce+fl-n) 

n- t3  ( ~) (ot _ a) Wa xa-ayfl-a z n-a-fl+a. 
(B.13) 

As is clear from the properties of correlation functions in field theory, for consistency 

Wick contractions must transform covariantly under linear transformations of the fields. A 
formal argument is easy to build. In particular if one does a linear transformation of the 
fields that leaves the polynomial in the fields invariant, the correlator is invariant. Thus, 

if p l ( u l ,  U2) is an invariant for ~ and Pr0) l ,  1)2) an invariant for Fr, P(w, x, y, Z) = 
( p I ( u l ,  u z ) p r ( v l ,  v2)) is an invariant for F.  

Moreover, with the chosen normalization, substitution of the u and v variables in P (w, x, 
y, Z) --  ( p l ( u l ,  u2) p r (v l ,  v2)) gives back Pl(Ul, u2)pr(vl, v2). 
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So if we start from an arbitrary polynomial  invariant P ( w ,  x ,  y, z), substitute the u and v 

variables according to Eq. (B. 12), and take the expectation value, we get a new polynomial  

Q ( w ,  x ,  y, z) such that P - Q gives 0 upon the substitution of the u and v variables. Now 

we use a trivial fact from algebra, related to the simplest Plticker embedding of algebraic 

geometry: the ideal of polynomials  in w, x, y and z vanishing identically upon substituting 

the u and v variables is principal and generated by the determinant wz  - xy .  Hence P - Q 

has to be a multiple of wz  - x y  and the quotient is of  course invariant because wz  - x y  

is. We can repeat the construction. At every step the degree decreases so the procedure 

must stop. This shows that all invariants are polynomials  in the determinant w z  - x y  with 

coefficients being the expectation value invariants. 

[f d (1) and d (r) denote the number of degree n invariants for ~ and Fr, the above con- 

struction yield d(l)d (r) invariants for F of degree n. From 

OO 
1 t12 + 

Fl( t )  = Z d(nl)t n = 
n=0 (1 - t6)(1 - tg) ' (B.14) 

o~ 1 + t 3° 

X--~'t(L'aunr)tn = (1 - t12)(1 - t20) ' Fr( t )  (B.15) 
n = 0  

one finds the generating function for the number of  invariants for ? induced from those of 

FI and ~ :  

O~ Z (1) (r) n 1 + t 12 t 20 + t 24 2t 3° + t 36 t 40 -+- t 48 t 60 
d~n d~n t = + + + + n=0 (1 -- tl2)(1 -- t20)(1 -- t 30) (B.16) 

As announced, the missing factor is due to the contribution of  wz  - xy .  We now proceed 

to give the invariants of  lowest degree explicitly. 

From (B.14), all polynomial  invariants f o r / 7  can be expressed in terms of  only three 

invariants, of  degree 6,8 and 12: 

p l = g u 6 -  2 0 u ~ u ~ -  u 6, (B.17) 

P ~ = g u ~ u 2 + 7  UlU 244 _ UlU~, (B.18) 

RI12---- 64 ull 2 + 704 UlU 293 + 8 g u r u  9 - u~ 2. (B.19) 

p l  2 RII2 , and two There are two left invariants of  degree 12, [ 6] and of  degree 20, namely 
p l12pl  and 1 l 6 j 8 R12Pg" 

Likewise for the right factor, all invariants can be written in terms of  three invariants of  

degree 12, 20 and 30: 

P~2 = v l lv2  + 11 6 6 v l l  v I v 2 -- Vl , (B.20) 

P~0 = v120 -- 228 vlSv 5 + 494 v~Ov 10 + 228 v5v 15 + v 20, (B.21) 

Ri o 30 255  005v20v 10 1 0 0 0 5 1 0 2 0  = v 1 + 522 v 1 v 2 10 _ _ O 1 V 2 

- 5 2 2  VSl v25 + v~ °. (B.22) 

There is one right invariant of degree 12, and one of  degree 20. 
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From the generating function (B. 11), the degrees of the five lowest irreducible invariants 

for F are 2, 12, 12, 20 and 20. In terms of left and right invariants, they are given by the 

following Wick products: 

P z = w z - x Y  ( = 6 ) ,  (B.23) 

P12:([pl]2P~2)(512 1341120 ) = ~ - +  7 + . - -  , (B.24) 

P;2 <.1,2p~2> ( 5'2 ) = = -'U + 1 9 9 4 8 8 + . . .  , (B.25) 

, 2 0 :  ( [ , l ] 2 , J , ~ O )  ( 6144  103882752 536266607616 ) 
: " - 7 -  + 17q + 187 + . . .  , (B.26) 

( =  6144 235855872 197872671744 ) 
P20~--- ( g ] 2 e l  P~0) q2 17q 17 + . . -  . (B.27) 

We have indicated in parenthesis the first terms of the Puiseux series of the invariants when 

one substitutes Xo, Xl, X2, X3 for w, x, y, z. One sees, upon the same substitution, that P2, 

P12 - P~2 and P20 - P20 - ~72 p4 P(2 are modular invariant functions, holomorphic in 
55 296 the upper-half plane, hence equal to pure constants, given respectively by 6, 7-- and 

1256 788 721664 They form a complete set of algebraic equations that describe the Riemann 187 
surface associated to su(3) level 2. Their explicit form is just a matter of computing Wick 

contractions using (B. 13). For completeness, we quote the final results: 

XoX3 -- X1 X2 = 6, (B.28) 

28 [Xl X2 + Xo x3l [24 (X~ X25 - X~ X 5) 
- ( 6 4 X  3X~+3X3x 3)(222 Xo X3 + 7 Xo XI X2 X3 + 2 X 2 x2) l  

- 1 4  [X0 X3 + 3 Xl X2] [64 X g X22 - 3 X 2 X~] 

- 1 4  [3 X0 X3 + X[ x2l [3 X02 X 82 -- 64 X 8 X21 

+16 [X6 X 62 + 36X0 XI 5 X 52X3 + 2 2 5 X 2 X 4 X 4 X 2 + 4 0 0 X ( ~ X ~ X 3 2 X ~ 2  3 . 

+225 X 4 X 2 X 2 X 4 X 5 + X 6 X 6] 2 3  +36XoSX1 X2 

+7 X 11 + 77X 6 X 6 7 X~' 2 X3 -- X2 + 27648 = 0, (B.29) 

{247 X 92 X 9 XO X3 + XO X 4 (8 XO 3 - X 3)42 (X3 + X23) - 57 X214 X34 (3 XO X3 + XI X2) 

+~ [4096 x~ x, 6 - 31 x~ x~] × [14 x~' x~ + 80xo x, 3 x~ x3 + 1+~ Xo ~ x~ x~ x~[ 

+ 4 , ~  [x~ x~ - x~ x~] x {21 x~ x~ + 175 xo x; x~ x3 + 450 x~ x, 3 x~ x~[ 

+ ~  ~ xo ~ x, ~ + 11 x~ x~  
×[2 x, 7 x~ + 35 xo x~' x 62x3+ 189 x~ x, ~ x 52 x~ + 420 xo 3 x~' x~ x~l 

832 {x~O x,O + lOOxo x? x~ x3 + 2025 xo ~ x, 8 x~ x~ + 14400 xo ~ x, ~ x~ xP 187 

4 x 6 x 6 x~ + 31752 x~ x, ~ x 5 xh +44100Xo 1 2  2 

4 [4096X011 Zl + 31 X2 X 11] x [273 X 4 X 4 + 455 X0 Z~ X23 X3 17 

+21Oxgx2x~x~, 2 +3OX~XlX2X~+X~Xh 
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8 17 [64 X 8 X 2 - 11X 2 X 8] x [1287 g~ X25 + 5005 XO g 4 ;(4 ;(3 

+6006 Xo 2 X 3 X 3 X~ + 2730 ;(3 ;(2 ;(22 X 3 + 455 ;(4 XI ;(2 X 4 + 21 ;(05 ;(35 ] 
11 6 6 +'~76 [XO ;(3 -- X1 ;(2] 4 x [64 ;((]1 ;(1 + 352 ;(6 Xl 6 _ ;(211 ;(3 -- T X2 ;(3 

+22 (8 ;(8 X 22 - ;(? ;(8) (;(0 ;(3 + 3 Xl X2) 
+44 (8 ;(3 X~ + X 3 ;(3) (2;(~ X 3 2 2 2 2 + 9 Xo Xl ;(2 X3)] 

628 394 360 832 O. 
+(;(0, Xl, ;(2, ;(3) > (;(I, --;(0, ;(3, --X2)} + 187 -- (B.30) 
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